Riemann surface
matlab

不必担心!我们的统计物理学专家团队将以同样的方式为您解决问题。我们拥有广泛的专业知识和丰富的经验,可以帮助您克服在统计物理学学习中遇到的各种挑战。无论是高水平作业还是论文,我们都能为您提供协助,确保您在学习道路上取得顺利进展!

以下是一些我们可以帮助您解决的问题:

统计物理学基础概念:涵盖统计物理学的基本概念,如统计力学、热力学等。

相变和临界现象:研究物质相变和临界现象的理论和实验方面。

随机过程和概率统计:探索与统计物理学相关的随机过程和概率统计的方法和应用。

平衡态和非平衡态统计物理学:介绍平衡态和非平衡态统计物理学的基本原理和方法。

量子统计物理学:研究与量子力学相结合的统计物理学理论和现象。

复杂系统和网络科学:探讨复杂系统和网络科学在统计物理学中的应用。

无论您在统计物理学方面面临的问题是什么,我们都将竭尽全力为您提供专业的帮助,确保您的学习之旅顺利无阻!

问题 1.

The pressure which a gas exerts on the walls of a vessel can be regarded as the time average of the impulses which the gas molecules impart on the wall when colliding with and recoiling from it. From this point of view, calculate the pressure $p$ and show that
$$
p=\frac{2}{3} n \bar{\varepsilon} \quad \text { (Bernoulli’s formula), }
$$
where $n$ is the average number of molecules per unit volume and $\bar{\varepsilon}$ the mean kinetic evergy per molecule.


SOLUTION
Let the vessel be a cube with edges of length $l$. Suppose that the wall is perfectly smooth so that a molecule colliding with it is reflected in a completely elastic way. Let us take the axis of an orthogonal coordinate system $x$, $\boldsymbol{y}, \boldsymbol{z}$ parallel to the edges. We shall neglect collisions of molecules with each other. The momentum components of a given molecule do not change their magnitude as a result of collisions with the walls. Therefore, this molecule collides $\left|p_x\right| / 2 \mathrm{ml}$ times per unit time with one of the walls prependicular to the $x$-axis, where $m$ is the mass of the molecule. As a result of each collision the wall receives a momentum $2\left|p_x\right|$ directed along the outward normal of the wall (perfect reflection). Hence the time average of the momentum, in other

words, the sum of the momentum imparted to the wall per unit time, is equal to $2\left|p_x\right| \cdot\left|p_x\right| / 2 m l=p_x^2 / m l$. Since the sum of these momenta yields a force, the contribution of this molecule to the pressure is given by this sum divided by the area of the wall $l^2\left(V=l^3\right.$ is the volume of the vessel). Therefore, adding together the contributions from all the molecules, we obtain the pressure exerted by all the molecules:
$$
p=\frac{1}{3 V} \sum_{i=1}^N \frac{p_{i x}^2+p_{i z}^2+p_{i z}^2}{m}=\frac{2}{3 V} \sum_{i=1}^N \frac{p_i^2}{2 m}=\frac{2}{3} \frac{N}{V} \bar{\varepsilon}=\frac{2}{3} n \bar{\varepsilon} .
$$

问题 2.

Show that a system in contact with a heat and particle source has particle number $N$ and energy $E$ with the probability given by $(1.73 \mathrm{a}, \mathrm{b})$.


Solution
Let $\Omega\left(N_{\mathrm{s}}, E_{\mathrm{s}}\right)$ be the density of states of the heat-particle source. We shall denote by $N_{\mathrm{t}}$ and $E_{\mathrm{t}}$ the total number of particles and the total energy of the compound system composed by the system under consideration and this heat-particle source, respectively. The probability $\operatorname{Pr}(N, E)$ that the system under consideration is in a microscopic state with $N$ and $E$ is proportional to the thermodynamic weight of a state of the heat-particle source with $N_{\mathrm{t}}-N$ and $E_{\mathrm{t}}-E$ :
$$
\begin{aligned}
\operatorname{Pr}(N, E) & \propto \Omega\left(N_{\mathrm{t}}-N, E_{\mathrm{t}}-E\right) \delta E_{\mathrm{t}} \
& \propto \exp \frac{1}{k}\left{S\left(N_{\mathrm{t}}-N, E_{\mathrm{t}}-E\right)-S\left(N_{\mathrm{t}} E_{\mathrm{t}}\right)\right}
\end{aligned}
$$

Since the heat-particle source is a very large system, we may put $N_{\mathrm{t}} \gg N$ and $E_{\mathrm{t}} \gg E$. Hence
$$
\begin{aligned}
& S\left(N_{\mathrm{t}}-N, E_{\mathrm{t}}-E\right)-S\left(N_{\mathrm{t}}, E_{\mathrm{t}}\right)= \
& =-N\left(\frac{\partial S}{\partial N_{\mathrm{t}}}\right){E{\mathrm{t}}}-E\left(\frac{\partial S}{\partial E_{\mathrm{t}}}\right){N{\mathrm{t}}}+\frac{1}{2}\left{N^2 \frac{\partial^2 S}{\partial N_{\mathrm{t}}^2}+2 N E \frac{\partial^2 S}{\partial N_{\mathrm{t}} \partial E_{\mathrm{t}}}+E^2 \frac{\partial^2 S}{\partial E_{\mathrm{t}}^2}\right}+\ldots \
& =\frac{\mu}{T} N-\frac{E}{T}+\frac{1}{2}\left{N \Delta\left(-\frac{\mu}{T}\right)+E \Delta\left(\frac{1}{T}\right)\right}+\ldots
\end{aligned}
$$
Here $\mu$ and $T$ are the chemical potential and the temperature of the heatparticle source with $N_t$ and $E_t$, and $\Delta$ indicates the variations due to the deviation of $N$ and $E$ from $N_{\mathrm{t}}$ and $E_{\mathrm{t}}$. Since these changes are $\mathrm{O}\left(N / N_{\mathrm{t}}\right)$ and $\mathrm{O}\left(E / E_{\mathrm{b}}\right)$, we can neglect them as long as $N \ll N_{\mathrm{t}}, E \ll E_{\mathrm{t}}$. Since the probability of having $N \sim N_{\mathrm{t}}, E \sim E_{\mathrm{t}}$ is, at any rate, extremely small, we can use this approximation. Therefore, from (1) we get
$$
\operatorname{Pr}(N, E) \propto \exp \left(\frac{\mu N-E}{k T}\right) .
$$
Normalizing this, we obtain (1.73a). (The same argument applies to the case where many kinds of particles are present.)

E-mail: help-assignment@gmail.com  微信:shuxuejun

help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注