Riemann surface
matlab
别忧虑!我们的推断统计专家团队将以同样的精神来帮助您解决问题。我们拥有深厚的专业知识和丰富的经验,能够帮助您克服在推断统计学习中遇到的各种挑战。不论是高难度的作业还是学术论文,我们都能为您提供协助,确保您的学习之旅一帆风顺!
以下是一些我们可以帮助您解决的问题:
推断统计基础概念:涵盖推断统计的基本概念,如假设检验、置信区间等。
参数估计:研究参数估计的方法,包括点估计和区间估计。
数据分析和模型选择:介绍数据分析的方法和模型选择的原则,包括数据的清理和预处理。
推断统计中的假设检验:探索假设检验的过程、类型以及其在实际研究中的应用。
概率分布和参数估计:研究各种概率分布,如正态分布、二项分布,以及相关参数的估计方法。
推断统计中的数值模拟:介绍推断统计中的数值模拟方法,如蒙特卡罗模拟。
回归分析和多元统计分析:探讨回归分析和多元统计分析的基本概念和应用,包括线性回归和逻辑回归等。
无论您在推断统计方面遇到的问题是什么,我们都将尽全力为您提供专业的帮助,确保您的学习之旅顺利无阻!

For each of the following experiments, describe a reasonable sample space:
(a) Toss a coin four times.
(b) Count the number of insect-damaged leaves on a plant.
(c) Measure the lifetime (in hours) of a particular brand of light bulb.
(d) Three people arrive at an airport checkpoint. Two of the three are randomly chosen to complete a survey.
Solutions
(a) Toss coin 4 times:
$$
{(H, H, H, H), \ldots}=\left{\left(x_1, x_2, x_3, x_4\right): x_i \in{H, T}\right}
$$
or
$$
{0,1,2,3,4}
$$
(b) Count number of insect-damaged leaves:
$$
\begin{array}{cl}
{0,1, \ldots, N} & N=# \text { leaves (or upper bound) } \
{0,1,2, \ldots} & \text { if no upper bound is available }
\end{array}
$$
1
Statistics STAT:5100 (22S:193), Fall 2015
Tierney
(c) Measure lifetime in hours:
$$
\begin{aligned}
{0,1,2, \ldots} & \text { if rounded (can put in upper limit) } \
{[0, \infty) } & \text { if fractional hours are allowed }
\end{aligned}
$$
(d) Two out of three people chosen to complete a survey: Suppose the people are labeled $A, B$, and $C$. One possible sample space is is the collection of all subsets of size 2 that can be chosen from the set ${A, B, C}$ :
$$
{{A, B},{A, C},{B, C}}
$$
Another possibility is the collection of all ordered pairs that can be formed:
$$
{(A, B),(B, A),(A, C),(C, A),(B, C),(C, B)}
$$
The set-theoretic difference $A \backslash B=A \cap B^c$ is the set of all elements in $A$ that are not in $B$. The symmetric difference $A \Delta B=(A \backslash B) \cup(B \backslash A)$ is the set of all elements in either $A$ or $B$ but not both. Verify the following identities:
(a) $A \backslash B=A \backslash(A \cap B)$
(b) $A \Delta B=A^c \Delta B^c$
(c) $A \cup B=A \cup(B \backslash A)$
(d) $B=(B \cap A) \cup\left(B \cap A^c\right)$
(a) $A \backslash B$ is defined as $A \cap B^c$. To see that $A \backslash B=A \backslash(A \cap B)$ :
$$
\begin{array}{rlr}
A \backslash(A \cap B) & =A \cap(A \cap B)^c & \
& =A \cap\left(A^c \cup B^c\right) & \text { De Morgan’s law } \
& =\left(A \cap A^c\right) \cup\left(A \cap B^c\right) & \text { distributive law } \
& =\emptyset \cup\left(A \cap B^c\right) & \
& =A \backslash B
\end{array}
$$
De Morgan’s law distributive law
(b) $A \Delta B=A^c \Delta B^c$ : For any two sets $A$ and $B$
$$
\begin{aligned}
& A \backslash B=A \cap B^c \
& =B^c \cap A \quad \text { commutative law } \
& =B^c \cap\left(A^c\right)^c \
& =B^c \backslash A^c \
&
\end{aligned}
$$
$\mathrm{So}$
$$
\begin{aligned}
A \Delta B & =(A \backslash B) \cup(B \backslash A) \
& =\left(A^c \backslash B^c\right) \cup\left(B^c \backslash A^c\right) \
& =A^c \Delta B^c
\end{aligned}
$$
(c) $A \cup B=A \cup(B \backslash A)$ :
$$
\begin{aligned}
A \cup B & =A \cup\left((B \cap A) \cup\left(B \cap A^c\right)\right) \quad \text { by part }(\mathrm{d}) \
& =(A \cup(B \cap A)) \cup\left(B \cap A^c\right) \quad \text { associative law } \
& =A \cup\left(B \cap A^c\right)
\end{aligned}
$$
(d) $B=(B \cap A) \cup\left(B \cap A^c\right)$ :
$$
\begin{aligned}
(B \cap A) \cup\left(B \cap A^c\right) & =B \cap\left(A \cup A^c\right) \quad \text { distributive law } \
& =B \cap S \
& =B
\end{aligned}
$$

E-mail: help-assignment@gmail.com 微信:shuxuejun
help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务