Riemann surface
matlab
不必担心!我们的回归分析专家团队将以同样的方式为您解决问题。我们拥有广泛的专业知识和丰富的经验,可以帮助您克服在回归分析学习中遇到的各种挑战。无论是高水平作业还是论文,我们都能为您提供协助,确保您在学习道路上取得顺利进展!
以下是一些我们可以帮助您解决的问题:
回归分析基础概念:涵盖回归分析的基本概念,如自变量和因变量、参数估计和假设检验等。
线性回归和多元回归:研究线性回归和多元回归的建模过程,包括模型设定、参数估计和模型检验。
回归诊断和模型选择:介绍回归诊断的方法和模型选择技术,包括残差分析、变量选择和模型复杂度的平衡。
非线性回归和逻辑回归:探索非线性回归和逻辑回归的性质、理论模型和应用场景。
回归分析的扩展:研究回归分析的扩展,如混合效应模型、生存分析和时间序列分析。
回归分析中的数值方法:介绍回归分析中的数值方法,如最小二乘法、最大似然估计和贝叶斯方法。
回归分析的实际应用:探讨回归分析在各种领域中的应用,如社会科学、经济学、生物学和工程学等。
无论您在回归分析方面面临的问题是什么,我们都将竭尽全力为您提供专业的帮助,确保您的学习之旅顺利无阻!

Solutions adapted from N.S. Boudreau’s Instructor’s Solution Manual (2011).
MBS, Ex. 12.2. On part (f), do not find or interpret $R_a^2$.
Solution:
(a) $\hat{\beta}0=506.346 ; \hat{\beta}_1=-941.900 ; \hat{\beta}_2=-429.060$ (b) $\hat{y}=506.36-941.90 x_1-429.1 x_2$. (c) $\mathrm{SSE}=151016 ; \mathrm{MSE}=8883 ; \mathrm{s}=94.251$. We expect about $95 \%$ of the $y$ values to be within $\pm 2 \mathrm{~s}= \pm 188.502$ unites of the fitted regression equation. (d) The $\mathrm{p}$-value for $\mathrm{H}_0: \beta_1=0$ against the alternative $\mathrm{H}{\mathrm{a}}: \beta_1 \neq 0$ is $\mathrm{p}=$ .003. Since $p<.05$, we would reject $\mathrm{H}0$; there is sufficient evidence to indicate $\beta_1 \neq 0$ at significance level $\alpha=.05$. (e) The $95 \%$ confidence interval for $\beta_2$ is $$ \begin{aligned} \hat{\beta}_2 \pm t{.025, n-k-1} \operatorname{SE}\left(\hat{\beta}2\right) & =-429.060 \pm 2.110(379.83) \ & =-429.060 \pm 801.4413 \ & =(-1230.5013,372.3813) . \end{aligned} $$ We have used that $n-k-1=20-2-1=17$, so that $t{.025, n-k-1}=$ 2.110 .
(f) $\mathrm{R}^2=45.9 \%$; the fitted regression model explains $45.9 \%$ of the variability in $y$.
$(\mathrm{g}) \mathrm{F}=7.22$
(h) The observed significance level is $p=0.005$. Since the p-value is so small, we would reject $H_0: \beta_1=\beta_2=0$ for most values of the significance level $\alpha$. We have very strong evidence that the model is useful (at least one of the predictor variables is useful for predicting $y$ ).
\begin{prob}
The Gesell dataset concerns a study of whether intelligence can be predicted based on the age at which a child starts to speak. For each of 21 participants in the study, the variable Age represents the age (in months) at which they spoke their first word, and the variable Score represents the Gesell Adaptive Score. (The Gesell test is an adult intelligence test).
(a) Without looking at the data, how would you expect Score to be related to Age? (Positively or negatively?)
Solution: Negatively: children who learn to speak earlier likely have higher intelligence. (Full credit for any answer.)

E-mail: help-assignment@gmail.com 微信:shuxuejun
help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务