Riemann surface
matlab
无需担心!我们的量子力学代写专家团队将专业地解决您在量子力学学习中遇到的各种挑战。我们拥有广泛的专业知识和丰富的经验,可以协助您完成高水平的作业和论文,确保您在学习道路上顺利前行!
以下是一些我们可以帮助您解决的问题:
量子力学基础概念:涵盖量子态、算符、测量等各种常用量子力学概念的定义、性质和分类。
薛定谔方程:研究和应用于量子力学中的薛定谔方程及其解析解、数值解等。
量子力学算符:常见的量子力学算符和观测量的性质与应用,如位置算符、动量算符等。
量子力学系统:研究量子力学中不同类型的系统,如简谐振子、氢原子等的量子描述。
量子力学测量:介绍量子力学中测量理论和测量算符的应用,如不确定性原理、测量的正交性等。
量子力学与统计力学:量子力学在统计力学领域的应用,包括量子统计和玻尔兹曼分布等。
量子力学与相对论:介绍量子力学和相对论的关系和量子场论的基本原理。
无论您面临的量子力学问题是什么,我们都会竭尽全力提供专业的帮助,确保您的学习之旅顺利无阻!

Problem 1.1 Consider a particle and two normalized energy eigenfunctions $\psi_1(\mathbf{x})$ and $\psi_2(\mathbf{x})$ corresponding to the eigenvalues $E_1 \neq E_2$. Assume that the eigenfunctions vanish outside the two non-overlapping regions $\Omega_1$ and $\Omega_2$ respectively.
(a) Show that, if the particle is initially in region $\Omega_1$ then it will stay there forever.
(b) If, initially, the particle is in the state with wave function
$$
\psi(\mathbf{x}, 0)=\frac{1}{\sqrt{2}}\left[\psi_1(\mathbf{x})+\psi_2(\mathbf{x})\right]
$$
show that the probability density $|\psi(\mathbf{x}, t)|^2$ is independent of time.
(c) Now assume that the two regions $\Omega_1$ and $\Omega_2$ overlap partially. Starting with the initial wave function of case (b), show that the probability density is a periodic function of time.
(d) Starting with the same initial wave function and assuming that the two eigenfunctions are real and isotropic, take the two partially overlapping regions $\Omega_1$ and $\Omega_2$ to be two concentric spheres of radii $R_1>R_2$. Compute the probability current that flows through $\Omega_1$.
Solution
(a) Clearly $\psi(\mathbf{x}, t)=e^{-i E t / \hbar} \psi_1(\mathbf{x})$ implies that $|\psi(\mathbf{x}, t)|^2=\left|\psi_1(\mathbf{x})\right|^2$, which vanishes outside $\Omega_1$ at all times.
(b) If the two regions do not overlap, we have
$$
\psi_1(\mathbf{x}) \psi_2^*(\mathbf{x})=0
$$
everywhere and, therefore,
$$
|\psi(\mathbf{x}, t)|^2=\frac{1}{2}\left[\left|\psi_1(\mathbf{x})\right|^2+\left|\psi_2(\mathbf{x})\right|^2\right]
$$
which is time independent.
(c) If the two regions overlap, the probability density will be
$$
\begin{aligned}
|\psi(\mathbf{x}, t)|^2= & \frac{1}{2}\left[\left|\psi_1(\mathbf{x})\right|^2+\left|\psi_2(\mathbf{x})\right|^2\right] \
& +\left|\psi_1(\mathbf{x})\right|\left|\psi_2(\mathbf{x})\right| \cos \left[\phi_1(\mathbf{x})-\phi_2(\mathbf{x})-\omega t\right]
\end{aligned}
$$
where we have set $\psi_{1,2}=\left|\psi_{1,2}\right| e^{i \phi_{1,2}}$ and $E_1-E_2=\hbar \omega$. This is clearly a periodic function of time with period $T=2 \pi / \omega$.
(d) The current density is easily computed to be
$$
\mathcal{J}=\hat{\mathbf{r}} \frac{\hbar}{2 m} \sin \omega t\left[\psi_2^{\prime}(r) \psi_1(r)-\psi_1^{\prime}(r) \psi_2(r)\right]
$$
and vanishes at $R_1$, since one or the other eigenfunction vanishes at that point. This can be seen through the continuity equation in the following alternative way:
$$
\begin{aligned}
I_{\Omega_1} & =-\frac{d}{d t} \mathcal{P}{\Omega_1}=\int{S\left(\Omega_1\right)} d \mathbf{S} \cdot \mathcal{J}=\int_{\Omega_1} d^3 x \nabla \cdot \mathcal{J}=-\int_{\Omega_1} d^3 x \frac{\partial}{\partial t}|\psi(\mathbf{x}, t)|^2 \
& =\omega \sin \omega t \int_{\Omega_1} d^3 x \psi_1(r) \psi_2(r)
\end{aligned}
$$
The last integral vanishes because of the orthogonality of the eigenfunctions.
Problem 1.2 Consider the one-dimensional normalized wave functions $\psi_0(x)$, $\psi_1(x)$ with the properties
$$
\psi_0(-x)=\psi_0(x)=\psi_0^*(x), \quad \psi_1(x)=N \frac{d \psi_0}{d x}
$$
Consider also the linear combination
$$
\psi(x)=c_1 \psi_0(x)+c_2 \psi_1(x)
$$
with $\left|c_1\right|^2+\left|c_2\right|^2=1$. The constants $N, c_1, c_2$ are considered as known.
(a) Show that $\psi_0$ and $\psi_1$ are orthogonal and that $\psi(x)$ is normalized.
(b) Compute the expectation values of $x$ and $p$ in the states $\psi_0, \psi_1$ and $\psi$.
(c) Compute the expectation value of the kinetic energy $T$ in the state $\psi_0$ and demonstrate that
$$
\left\langle\psi_0\left|T^2\right| \psi_0\right\rangle=\left\langle\psi_0|T| \psi_0\right\rangle\left\langle\psi_1|T| \psi_1\right\rangle
$$
and that
$$
\left\langle\psi_1|T| \psi_1\right\rangle \geq\langle\psi|T| \psi\rangle \geq\left\langle\psi_0|T| \psi_0\right\rangle
$$
Solution
(a) We have
$$
\begin{aligned}
\left\langle\psi_0 \mid \psi_1\right\rangle & =N \int d x \psi_0^* \frac{d \psi_0}{d x}=N \int d x \psi_0 \frac{d \psi_0}{d x} \
& =\frac{N}{2} \int d x \frac{d \psi_0^2}{d x}=\frac{N}{2}\left{\psi_0^2(x)\right}_{-\infty}^{+\infty}=0
\end{aligned}
$$
The normalization of $\psi(x)$ follows immediately from this and from the fact that $\left|c_1\right|^2+\left|c_2\right|^2=1$
(b) On the one hand the expectation value $\left\langle\psi_0|x| \psi_0\right\rangle$ vanishes because the integrand $x \psi_0^2(x)$ is odd. On the other hand, the momentum expectation value in this state is
$$
\begin{aligned}
\left\langle\psi_0|p| \psi_0\right\rangle & =-i \hbar \int d x \psi_0(x) \psi_0^{\prime}(x) \
& =-\frac{i \hbar}{N} \int d x \psi_0(x) \psi_1(x)=-\frac{i \hbar}{N}\left\langle\psi_0 \mid \psi_1\right\rangle=0
\end{aligned}
$$
as we proved in the solution to (a). Similarly, owing to the oddness of the integrand $x \psi_1^2(x)$, the expectation value $\left\langle\psi_1|x| \psi_1\right\rangle$ vanishes. The momentum expectation value is
$$
\begin{aligned}
\left\langle\psi_1|p| \psi_1\right\rangle & =-i \hbar \int d x \psi_1^* \psi_1^{\prime}=-i \hbar \frac{N}{N^} \int d x \psi_1 \psi_1^{\prime} \ & =-i \hbar \frac{N}{2 N^} \int d x \frac{d \psi_1^2}{d x}=-i \hbar \frac{N}{2 N^*}\left{\psi_1^2\right}_{-\infty}^{+\infty}=0
\end{aligned}
$$
(c) The expectation value of the kinetic energy squared in the state $\psi_0$ is
$$
\begin{aligned}
\left\langle\psi_0\left|T^2\right| \psi_0\right\rangle & =\frac{\hbar^4}{4 m^2} \int d x \psi_0 \psi_0^{\prime \prime \prime \prime}=-\frac{\hbar^4}{4 m^2} \int d x \psi_0^{\prime} \psi_0^{\prime \prime \prime} \
& =\frac{\hbar^2}{2 m|N|^2}\left\langle\psi_1|T| \psi_1\right\rangle
\end{aligned}
$$
Note however that
$$
\begin{aligned}
\left\langle\psi_0|T| \psi_0\right\rangle & =-\frac{\hbar^2}{2 m} \int d x \psi_0 \psi_0^{\prime \prime}=\frac{\hbar^2}{2 m} \int d x \psi_0^{\prime} \psi_0^{\prime} \
& =\frac{\hbar^2}{2 m|N|^2}\left\langle\psi_1 \mid \psi_1\right\rangle=\frac{\hbar^2}{2 m|N|^2}
\end{aligned}
$$
Therefore, we have
$$
\left\langle\psi_0\left|T^2\right| \psi_0\right\rangle=\left\langle\psi_0|T| \psi_0\right\rangle\left\langle\psi_1|T| \psi_1\right\rangle
$$
Consider now the Schwartz inequality
$$
\left|\left\langle\psi_0 \mid \psi_2\right\rangle\right|^2 \leq\left\langle\psi_0 \mid \psi_0\right\rangle\left\langle\psi_2 \mid \psi_2\right\rangle=\left\langle\psi_2 \mid \psi_2\right\rangle
$$
where, by definition,
$$
\psi_2(x) \equiv-\frac{\hbar^2}{2 m} \psi_0^{\prime \prime}(x)
$$
The right-hand side can be written as
$$
\left\langle\psi_2 \mid \psi_2\right\rangle=\left\langle\psi_0\left|T^2\right| \psi_0\right\rangle=\left\langle\psi_0|T| \psi_0\right\rangle\left\langle\psi_1|T| \psi_1\right\rangle
$$
Thus, the above Schwartz inequality reduces to
$$
\left\langle\psi_0|T| \psi_0\right\rangle \leq\left\langle\psi_1|T| \psi_1\right\rangle
$$
In order to prove the desired inequality let us consider the expectation value of the kinetic energy in the state $\psi$. It is
$$
\langle\psi|T| \psi\rangle=\left|c_1\right|^2\left\langle\psi_0|T| \psi_0\right\rangle+\left|c_2\right|^2\left\langle\psi_1|T| \psi_1\right\rangle
$$
The off-diagonal terms have vanished due to oddness. The right-hand side of this expression, owing to the inequality proved above, will obviously be smaller than
$$
\left|c_1\right|^2\left\langle\psi_1|T| \psi_1\right\rangle+\left|c_2\right|^2\left\langle\psi_1|T| \psi_1\right\rangle=\left\langle\psi_1|T| \psi_1\right\rangle
$$
Analogously, the same right-hand side will be larger than
$$
\left|c_1\right|^2\left\langle\psi_0|T| \psi_0\right\rangle+\left|c_2\right|^2\left\langle\psi_0|T| \psi_0\right\rangle=\left\langle\psi_0|T| \psi_0\right\rangle
$$
Thus, finally, we end up with the double inequality
$$
\left\langle\psi_0|T| \psi_0\right\rangle \leq\langle\psi|T| \psi\rangle \leq\left\langle\psi_0|T| \psi_0\right\rangle
$$

E-mail: help-assignment@gmail.com 微信:shuxuejun
help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务