Riemann surface
matlab

无需担心!我们的电动力学代写专家团队将专业地解决您在电动力学学习中遇到的各种挑战。我们拥有广泛的专业知识和丰富的经验,可以协助您完成高水平的作业和论文,确保您在学习道路上顺利前行!

以下是一些我们可以帮助您解决的问题:

电场与电势:涵盖电场、电势的概念、性质和计算方法,如库仑定律、电势差等。

电荷分布与电场:研究电荷分布对电场产生的影响,如连续分布、点电荷等。

电磁感应与法拉第定律:常见的电磁感应现象和法拉第电磁感应定律的应用,如感应电动势、电磁感应中的能量转换等。

电场与介质:介绍电场在不同介质中的传播和相互作用,如电介质极化、介质中的电场能量储存等。

安培定律与电流:研究电流和安培定律的应用,如电流分布、电流在电路中的传输等。

电磁场的辐射和辐射场:介绍电磁场的辐射和辐射场的产生、传播和特性,如辐射强度、辐射模式等。

麦克斯韦方程组:研究和应用麦克斯韦方程组,如电磁波的传播和解析解等。

无论您面临的电动力学问题是什么,我们都会竭尽全力提供专业的帮助,确保您的学习之旅顺利无阻!

问题 1.

A point charge $q$ is brought to a position a distance $d$ away from an infinite plane conductor held at zero potential. Using the method of images, find:
(a) the surface-charge density induced on the plane, and plot it;
(b) the force between the plane and the charge by using Coulomb’s law for the force between the charge and its image;
(c) the total force acting on the plane by integrating $\sigma^2 / 2 \epsilon_0$ over the whole plane;

(a) We’ll take $d$ to be in the $z$ direction, so the charge $q$ is at $(x, y, z)=(0,0, d)$. The image charge is $-q$ at $(0,0,-d)$. The potential at a point $\mathbf{r}$ is
$$
\Phi(\mathbf{r})=\frac{q}{4 \pi \epsilon_0}\left[\frac{1}{|\mathbf{r}-d \mathbf{k}|}-\frac{1}{|\mathbf{r}+d \mathbf{k}|}\right]
$$
The surface charge induced on the plane is found by differentiating this:
1
Homer Reid’s Solutions to Jackson Problems: Chapter 2
2
$$
\begin{aligned}
\sigma & =-\left.\epsilon_0 \frac{d \Phi}{d z}\right|{z=0} \ & =-\left.\frac{q}{4 \pi}\left[\frac{-(z-d)}{|\mathbf{r}+d \mathbf{k}|^3}+\frac{(z+d)}{|\mathbf{r}+d \mathbf{k}|^3}\right]\right|{z=0} \
& =-\frac{q d}{2 \pi\left(x^2+y^2+d^2\right)^{3 / 2}}
\end{aligned}
$$
We can check this by integrating this over the entire $x y$ plane and verifying that the total charge is just the value $-q$ of the image charge:
$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sigma(x, y) d x d y=-\frac{q d}{2 \pi} \int_0^{\infty} \int_0^{2 \pi} \frac{r d \psi d r}{\left(r^2+d^2\right)^{3 / 2}} \
& =-q d \int_0^{\infty} \frac{r d r}{\left(r^2+d^2\right)^{3 / 2}} \
& =-\frac{q d}{2} \int_{d^2}^{\infty} u^{-3 / 2} d u \
& =-\frac{q d}{2}\left|-2 u^{-1 / 2}\right|_{d^2}^{\infty} \
& =-q \
&
\end{aligned}
$$

(b) The point of this problem is that, for points above the $z$ axis, it doesn’t matter whether there is a charge $-q$ at $(0,0, d)$ or an infinite grounded sheet at $z=0$. Physics above the $z$ axis is exactly the same whether we have the charge or the sheet. In particular, the force on the original charge is the same whether we have the charge or the sheet. That means that, if we assume the sheet is present instead of the charge, it will feel a reaction force equal to what the image charge would feel if it were present instead of the sheet. The force on the image charge would be just $F=q^2 / 16 \pi \epsilon_0 d^2$, so this must be what the sheet feels.
(c) Total force on sheet
$$
\begin{aligned}
& =\frac{1}{2 \epsilon_0} \int_0^{\infty} \int_0^{2 \pi} \sigma^2 d A \
& =\frac{q^2 d^2}{4 \pi \epsilon_0} \int_0^{\infty} \frac{r d r}{\left(r^2+d^2\right)^3} \
& =\frac{q^2 d^2}{8 \pi \epsilon_0} \int_{d^2}^{\infty} u^{-3} d u \
& =\frac{q^2 d^2}{8 \pi \epsilon_0}\left|-\frac{1}{2} u^{-2}\right|_{d^2}^{\infty} \
& =\frac{q^2 d^2}{8 \pi \epsilon_0}\left[\frac{1}{2} d^{-4}\right]
\end{aligned}
$$

$$
=\frac{q^2}{16 \pi \epsilon_0 d^2}
$$
in accordance with the discussion and result of part b.

问题 2.

(d) the work necessary to remove the charge $q$ from its position to infinity;
(e) the potential energy between the charge $q$ and its image (compare the answer to part $d$ and discuss).
(f) Find the answer to part d in electron volts for an electron originally one angstrom from the surface.

(d) Work required to remove charge to infinity
$$
\begin{aligned}
& =\frac{q^2}{4 \pi \epsilon_0} \int_d^{\infty} \frac{d z}{(z+d)^2} \
& =\frac{q^2}{4 \pi \epsilon_0} \int_{2 d}^{\infty} u^{-2} d u \
& =\frac{q^2}{4 \pi \epsilon_0} \frac{1}{2 d} \
& =\frac{q^2}{8 \pi \epsilon_0 d}
\end{aligned}
$$
(e) Potential energy between charge and its image
$$
=\frac{q^2}{8 \pi \epsilon_0 d}
$$
equal to the result in part $d$.
(f)
$$
\begin{aligned}
\frac{q^2}{8 \pi \epsilon_0 d} & =\frac{\left(1.6 \cdot 10^{-19} \text { coulombs }\right)^2}{8 \pi\left(8.85 \cdot 10^{-12} \text { coulombs } \mathrm{V}^{-1} \mathrm{~m}^{-1}\right)\left(10^{-10} \mathrm{~m}\right)} \
& =7.2 \cdot\left(1.6 \cdot 10^{-19} \text { coulombs } \cdot 1 \mathrm{~V}\right) \
& =7.2 \mathrm{eV} .
\end{aligned}
$$

\end{prob}

E-mail: help-assignment@gmail.com  微信:shuxuejun

help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注