Riemann surface
matlab
放心吧!我们的计量经济学专家团队将以同样的精神来帮助您解决问题。我们拥有深厚的专业知识和丰富的经验,能帮助您应对在计量经济学学习过程中的各种挑战。无论是复杂的作业还是学术论文,我们都能为您提供协助,确保您的学习之旅顺利进行!
以下是一些我们可以帮助您解决的问题:
计量经济学基础概念:涵盖计量经济学的基本概念,如最小二乘法、多元线性回归等。
模型设定和识别:研究如何设置和识别经济模型,包括模型的假设和检验。
数据收集和统计分析:介绍数据收集的方法和统计分析技术,包括数据的处理和可视化。
计量经济学中的假设检验和模型选择:探索假设检验的方法、模型选择的准则以及相关的理论证据。
参数估计和假设检验:研究参数估计的方法,如最大似然估计,以及假设检验的实现,如t检验和F检验。
计量经济学中的数值模拟:介绍计量经济学中的数值模拟方法,如蒙特卡洛模拟和引导重抽样。
时间序列分析和面板数据模型:探讨时间序列分析和面板数据模型的基本概念和应用,包括自回归模型和固定效应模型等。
无论您在计量经济学方面遇到的问题是什么,我们都将尽全力为您提供专业的帮助,确保您的学习之旅顺利无阻!

Consider the optimization problem of minimizing the variance of the weighted estimator. If the estimate is to be unbiased, it must be of the form $c_1 \hat{\theta}1+c_2 \hat{\theta}_2$ where $c_1$ and $c_2$ sum to 1 . Thus, $c_2=1-c_1$. The function to minimize is $\operatorname{Min}_c L*=c_1^2 v_1+\left(1-c_1\right)^2 v_2$. The necessary condition is $\partial L_{\mathrm{s}} / \partial c_1=2 c_1 v_1-2\left(1-c_1\right) v_2=0$ which implies $c_1=v_2 /\left(v_1+v_2\right)$. A more intuitively appealing form is obtained by dividing numerator and denominator by $v_1 v_2$ to obtain $c_1=\left(1 / v_1\right) /\left[1 / v_1+1 / v_2\right]$. Thus, the weight is proportional to the inverse of the variance. The estimator with the smaller variance gets the larger weight.
a. The sample means are (1/100) times the elements in the first column of $\mathbf{X}^{\prime} \mathbf{X}$. The sample covariance matrix for the three regressors is obtained as $(1 / 99)\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)_{i j}-100 \bar{x}_i \bar{x}_j\right]$.
$$
\begin{aligned}
& \text { Sample Var[ } \mathbf{x}]=\left[\begin{array}{ccc}
1.0127 & 0.069899 & 0.555489 \
0.069899 & 0.755960 & 0.417778 \
0.555489 & 0.417778 & 0.496969
\end{array}\right] \text { The simple correlation matrix is } \
& {\left[\begin{array}{ccc}
1 & .07971 & .78043 \
.07971 & 1 & .68167 \
.78043 & .68167 & 1
\end{array}\right]} \
&
\end{aligned}
$$
b. The vector of slopes is $\left(\mathbf{X}^{\boldsymbol{\prime}} \mathbf{X}\right)^{-1} \mathbf{X}^{\boldsymbol{t}} \mathbf{y}=[-.4022,6.123,5.910,-7.525]^{\boldsymbol{t}}$.
c. For the three short regressions, the coefficient vectors are
(1) one, $x_1$, and $x_2:[-.223,2.28,2.11]^{\prime}$
(2) one, $x_1$, and $x_3[-.0696, .229,4.025]^{\prime}$
(3) one, $x_2$, and $x_3:[-.0627,-.0918,4.358]^{\prime}$
d. The magnification factors are
$$
\begin{aligned}
& \text { for } x_1:\left[(1 /(99(1.01727)) / 1.129]^2=.094\right. \
& \text { for } x_2:[(1 / 99(.75596)) / 1.11]^2=.109 \
& \text { for } x_3:[(1 / 99(.496969)) / 4.292]^2=.068
\end{aligned}
$$
e. The problem variable appears to be $x_3$ since it has the lowest magnification factor. In fact, all three are highly intercorrelated. Although the simple correlations are not excessively high, the three multiple correlations are .9912 for $x_1$ on $x_2$ and $x_3, .9881$ for $x_2$ on $x_1$ and $x_3$, and .9912 for $x_3$ on $x_1$ and $x_2$.

E-mail: help-assignment@gmail.com 微信:shuxuejun
help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务