Riemann surface
matlab

放心吧!我们的贝叶斯分析专家团队将以同样的热情帮助你解决问题。我们拥有深厚的专业知识和丰富的实践经验,能够帮助你应对贝叶斯分析学习中的各种挑战。无论是复杂的数据分析任务,还是研究论文,我们都能为您提供帮助,确保您在学习过程中顺利进展!

以下是一些我们可以帮助您解决的问题:

贝叶斯分析的基础概念:包括贝叶斯定理的基本概念,如先验概率、后验概率和似然性等。

贝叶斯模型建立:深入研究贝叶斯模型的建立过程,包括如何选择先验,如何计算后验以及模型的校验。

贝叶斯推断和学习:介绍贝叶斯分析中的推断方法和学习技巧,包括参数估计、预测和模型选择等。

贝叶斯分析的应用:探讨贝叶斯分析在各种实际问题中的应用,如统计决策、风险评估和预测建模等。

高级贝叶斯分析主题:包括贝叶斯层次模型、马尔科夫链蒙特卡洛方法和贝叶斯非参数方法等。

贝叶斯分析的软件工具:使用如R、Python、WinBUGS和Stan等工具进行贝叶斯分析的建模和推断。

贝叶斯分析在各领域的应用:研究贝叶斯分析在各种领域的应用,如人工智能、医疗健康、金融风险管理和社会科学研究等。

无论您在贝叶斯分析方面面临的问题是什么,我们都将尽全力为您提供专业的帮助,确保您的学习之旅顺利无阻!

问题 1.

Exercise 2.1. [Purpose: To get you to think about what beliefs can be altered by inference from data.] Suppose I believe that exactly 47 angels can dance on my head. (These angels cannot be seen or felt in any way.) Can you provide any evidence that would change my belief?

No. By assumption, the belief has no observable consequences, and therefore no observable data can affect the belief.
Suppose I believe that exactly 47 anglers can dance on the floor of the bait shop. Is there any evidence you could provide that would change my belief?

Yes. Because dancing anglers and bait-shop floors have measurable spatial extents, data from observed anglers and floors can influence the belief.

问题 2.

Exercise 2.2. [Purpose: To get you to actively manipulate mathematical models of probabilities. Notice, however, that these models have no parameters.] Suppose we have a four-sided die from a board game. (On a tetrahedral die, each face is an equilateral triangle. When you roll the die, it lands with one face down and the other three visible as the faces of a three-sided pyramid. To read the value of the roll, you pick up the die and see what landed face down.) One side has one dot, the second side has two dots, the third side has three dots, and the fourth side has four dots. Denote the value of the bottom face as $\mathbf{x}$. Consider the following three mathematical descriptions of the probabilities of $\mathbf{x}$. Model A: $p(x)=1 / 4$. Model B: $p(x)=x / 10$. Model C: $p(x)=12 /(25 x)$. For each model, determine the value of $p(x)$ for each value of $x$. Describe in words what kind of bias (or lack of bias) is expressed by each model.


Model A: $\mathrm{p}(\mathrm{x}=1)=1 / 4, \mathrm{p}(\mathrm{x}=2)=1 / 4, \mathrm{p}(\mathrm{x}=3)=1 / 4, \mathrm{p}(\mathrm{x}=4)=1 / 4$. This model is unbiased, in that every value has the same probability.
Model B: $\mathrm{p}(\mathrm{x}=1)=1 / 10, \mathrm{p}(\mathrm{x}=2)=2 / 10, \mathrm{p}(\mathrm{x}=3)=3 / 10, \mathrm{p}(\mathrm{x}=4)=4 / 10$. This model is biased toward higher values of $x$.
Model C: $\mathrm{p}(\mathrm{x}=1)=12 / 25, \mathrm{p}(\mathrm{x}=2)=12 / 50, \mathrm{p}(\mathrm{x}=3)=12 / 75, \mathrm{p}(\mathrm{x}=4)=12 / 100$. (Notice that the probabilities sum to 1.) This model is biased toward lower values of $x$.

E-mail: help-assignment@gmail.com  微信:shuxuejun

help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注