Riemann surface
matlab
还在面临光学的学习挑战吗?别担心!我们的optics-guide团队专业为您解决光的传播、折射、反射等光学问题。我们拥有深厚的专业背景和丰富的经验,能帮您完成高水平的作业和论文,让您的学习之路一帆风顺!
以下是一些我们可以帮助您解决的问题:
光的传播与波动:光的传播方式、光的波动性质和光的干涉与衍射现象等。
光的折射与反射:光的折射定律、反射定律和光的全反射等。
透镜和光学仪器:透镜的类型、性质和光学成像原理,以及光学仪器的设计和应用。
光的色散与偏振:光的色散现象和光的偏振性质,如色散衍射和偏振光的传播等。
光的干涉与衍射:光的干涉现象、衍射现象和干涉、衍射实验的分析和应用。
光的相干与激光:光的相干性质和激光的原理、特性和应用。
无论您面临的光学问题是什么,我们都会尽力为您提供专业的帮助,确保您的学习之旅顺利无阻!

Problem 1: Wanda’s world
a) The geometry for this problem is shown in Figure 1. For part (a), the object (Wanda) is located inside the bowl and we are interested to find where the image is formed. We start by using the matrix formulation to analyze the given system,
$$
\begin{aligned}
{\left[\begin{array}{c}
\alpha_i \
x_i
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 0 \
s & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -\frac{(1-n)}{-R} \
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \
\frac{R}{n} & 1
\end{array}\right]\left[\begin{array}{c}
n \alpha_o \
x_o
\end{array}\right] \
& =\left[\begin{array}{cc}
\frac{1}{n} & \frac{(1-n)}{R} \
\frac{R}{n}+\frac{s}{n} & 1+\frac{s(1-n)}{R}
\end{array}\right]\left[\begin{array}{c}
n \alpha_o \
x_o
\end{array}\right] .
\end{aligned}
$$
To find the imaging condition, we note that all the rays, regardless of their departure angle $\alpha_o$, arrive at the image point $x_i$ (i.e. $\partial x_i / \partial \alpha_o=0$ ),
$$
\begin{aligned}
\frac{R}{n}+\frac{s}{n} & =0 \Rightarrow \
s & =-R .
\end{aligned}
$$
We see that the image is formed at the center of the bowl and is virtual. Using this result in equation 1 ,
$$
\left[\begin{array}{l}
\alpha_i \
x_i
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{n} & \frac{(1-n)}{R} \
0 & n
\end{array}\right]\left[\begin{array}{c}
n \alpha_o \
x_o
\end{array}\right] .
$$
The lateral magnification is,
$$
M_L=\frac{x_i}{x_o}=n
$$
and therefore, the image is erect.
b) For this part, the object (Olive) is located outside the bowl and we are interested to find where the image is formed. Again, we solve this part using the matrix formulation,
$$
\begin{aligned}
{\left[\begin{array}{l}
\alpha_i \
x_i
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 0 \
\frac{s^{\prime}}{n} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -\frac{(n-1)}{R} \
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \
s & 1
\end{array}\right]\left[\begin{array}{c}
n \alpha_o \
x_o
\end{array}\right] \
& =\left[\begin{array}{cc}
1-\frac{s(n-1)}{R} & -\frac{(n-1)}{R^{\prime}(n-1)} \
\frac{s^{\prime}}{n}+s-\frac{s^{\prime}(n-1)}{n R} & 1-\frac{s^{\prime}(n R}{n R}
\end{array}\right]\left[\begin{array}{c}
n \alpha_o \
x_o
\end{array}\right] .
\end{aligned}
$$
From the imaging condition $\left(\partial x_i / \partial \alpha_o=0\right)$, we solve for $s^{\prime}$,
$$
\begin{aligned}
\frac{s^{\prime}}{n}+s-\frac{s s^{\prime}(n-1)}{n R} & =0 \Rightarrow \
s^{\prime} & =\frac{s n R}{s(n-1)-R} .
\end{aligned}
$$
The lateral magnification is (for an on-axis ray, $\alpha_o=0$ ),
$$
\begin{aligned}
M_L & =\frac{x_i}{x_o}=1-\frac{s^{\prime}(n-1)}{n R} \
& =1-\frac{\operatorname{snR}(n-1)}{(s(n-1)-R) n R}=-\frac{R}{s(n-1)-R}
\end{aligned}
$$
From equations 6 and 7 , the following cases arise:
If $R>s(n-1) \rightarrow s^{\prime}<0$, the image is virtual, erect and is located at a distance $\left|s^{\prime}\right|$ outside the bowl.
If $R>s(n-1) \rightarrow s^{\prime}>0$, the image is real, inverted and is located at a distance $\left|s^{\prime}\right|$ inside the bowl.
c) If we were to consider the glass container of thickness $t$ as well as the inner, $R_1$, and outer, $R_2$, radii, the matrix formulation becomes,
$$
\begin{aligned}
{\left[\begin{array}{c}
\alpha_i \
x_i
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 0 \
\frac{s^{\prime}}{n} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -\frac{\left(n-n_g\right)}{R_1} \
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \
\frac{t}{n_g} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -\frac{\left(n_g-1\right)}{R_2} \
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \
s & 1
\end{array}\right]\left[\begin{array}{c}
n \alpha_o \
x_o
\end{array}\right] \
& =\left[\begin{array}{ll}
1 & 0 \
\frac{s^{\prime}}{n} & 1
\end{array}\right]\left[\begin{array}{cc}
1-\frac{t\left(n-n_g\right)}{R_1 n_g} & P \
\frac{t}{n_g} & 1-\frac{t\left(n_g-1\right)}{R_2 n_g}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \
s & 1
\end{array}\right]\left[\begin{array}{c}
n \alpha_o \
x_o
\end{array}\right] \
& =\left[\begin{array}{cc}
1+P s-\frac{t\left(n-n_g\right)}{R_1 n_g} & P \
\frac{s^{\prime}}{n}\left(1-\frac{t\left(n-n_g\right)}{R_1 n_g}\right)+\frac{t}{n_g}+s\left(\frac{s_{s^{\prime}} P}{n}+1-\frac{t\left(n_g-1\right)}{R_2 n_g}\right) & 1+\frac{s^{\prime} P}{n}-\frac{t\left(n_g-1\right)}{R_2 n_g}
\end{array}\right]\left[\begin{array}{c}
n \alpha_o \
x_o
\end{array}\right],
\end{aligned}
$$
where,
$$
P=-\left[\frac{\left(n-n_g\right)}{R_1}+\frac{\left(n_g-1\right)}{R_2}-\frac{t}{n_g R_1 R_2}\left(n-n_g\right)\left(n_g-1\right)\right] .
$$
For the case of uniform glass: $R_1=R_2=R$. The imaging condition is,
$$
\frac{s^{\prime}}{n}+s-\frac{s s^{\prime}(n-1)}{n R}-\frac{s^{\prime} t\left(n-n_g\right)}{R n_g n}+\frac{t}{n_g}-\frac{s t\left(n_g-1\right)}{R n_g}+\frac{s s^{\prime}}{n R}\left(\frac{t\left(n-n_g\right)\left(n_g-1\right)}{R n_g}\right)=0
$$

E-mail: help-assignment@gmail.com 微信:shuxuejun
help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务