Riemann surface
matlab

无需担心!我们的广义相对论代写专家团队将专业地解决您在广义相对论学习中遇到的各种挑战。我们拥有广泛的专业知识和丰富的经验,可以协助您完成高水平的作业和论文,确保您在学习道路上顺利前行!

以下是一些我们可以帮助您解决的问题:

广义相对论基础概念:涵盖时空、引力、度规等各种常用广义相对论概念的定义、性质和分类。

引力场方程:研究和应用于广义相对论中的引力场方程及其解析解、数值解等。

时空几何与曲率:常见的时空几何性质和曲率计算方法,如测地线、黎曼张量等。

黑洞与宇宙学:广义相对论在黑洞和宇宙学领域的应用,包括黑洞形成、膨胀宇宙模型等。

引力波:介绍引力波的产生、探测与分析方法,如LIGO、VIRGO等引力波探测器。

时空奇异性与时空结构:研究广义相对论中的时空奇异性和时空结构,如黑洞奇点、宇宙奇点等。

广义相对论与量子力学:介绍广义相对论与量子力学的关系和统一理论的研究进展。

无论您面临的广义相对论问题是什么,我们都会竭尽全力提供专业的帮助,确保您的学习之旅顺利无阻!

问题 1.


Problem 1
Hydrostatic Equilibrium in GR. Model a neutron star atmosphere with a simple equation of state: $P=K \rho^\gamma$, where $P$ is pressure, $\rho$ is mass density, $\gamma$ is the adiabatic index and $K$ is a constant. Assume that $g_{00}=-\left(1-2 G M / r c^2\right)$, where $M$ is the mass of the star and $r$ is radius. If $\rho=\rho_0$ at the surface $r=R_0$, solve the equation of hydrostatic equilibrium to show that
$$
\frac{1+K \rho^{\gamma-1} / c^2}{1+K \rho_0^{\gamma-1} / c^2}=\left(\frac{1-R_S / r_0}{1-R_S / r}\right)^\alpha
$$
where $R_S=2 G M / c^2$ is the so-called Schwarzschild radius, and $2 \alpha \gamma=\gamma-1$. (Hint: See $\S 4.6$ of the notes.) What is the Newtonian limit of the above equation? Express your answer in terms of the speed of sound $a, a^2=\gamma P / \rho$ and the potential $\Phi(r)=-G M / r$. (OPTIONAL: For those who have studied fluids, what quantity is being conserved in the Newtonian limit?)


Solution: Here we encounter fluid dynamics in curved space-time. Recall that fluid dynamics is the dynamics of densities of conserved charges. In the relativistic case, these are $T^{00}$ and $T^{0 i}$ components of the conserved energy-momentum tensor. In flat space, the conservation law is simply
$$
\partial_\mu T^{\mu \nu}=0
$$
Other components of $T^{\mu \nu}$ are related to $T^{00}$ and $T^{0 i}$ via the constitutve relations
$$
T^{\mu \nu}=P \eta^{\mu \nu}+\left(\rho+P / c^2\right) u^\mu u^\nu+\cdots,
$$
where the infinite tail involving derivatives of $u^\mu(x)$ is omitted (we assume here that the gradients of $u^\mu(x)$ are small which of course may not always be the case). This (covariant) form of $T^{\mu \nu}$ follows either by applying Lorentz transformation (with the velocity encoded in $u^\mu=(\gamma c, \gamma \mathbf{v})$ ) to $T_0^{\mu \nu}$ in fluid’s rest frame,
$$
T_0^{\mu \nu}=\left(\begin{array}{rrrr}
\rho c^2 & 0 & 0 & 0 \
0 & P & 0 & 0 \
0 & 0 & P & 0 \
0 & 0 & 0 & P
\end{array}\right),
$$
or by writing the most general covariant expression involving all the relevant ingredients ( $\eta_{\mu \nu}$ and $u^\mu$ – but not $\partial_\nu u^\mu$ if we assume small gradients),
$$
T^{\mu \nu}=A \eta^{\mu \nu}+B u^\mu u^\nu,
$$

and then comparing this expression in fluid’s rest frame (where $u^\mu=(c, 0)$ ) to eq. (3) to read off the coefficients $A$ and $B$.
In curved space-time, eqs. (1) and (2) are replaced by
$$
\begin{aligned}
& T^{\mu \nu}=P g^{\mu \nu}+\left(\rho+P / c^2\right) u^\mu u^\nu+\cdots, \
& \nabla_\mu T^{\mu \nu}=0,
\end{aligned}
$$
where $g_{\mu \nu} u^\mu u^\nu=-c^2$. Explicitly, the equation (5) with $\nu=0$ is
$$
\frac{\partial P}{\partial x^\mu}+\left(\rho c^2+P(\rho)\right) \frac{\partial \ln \left|g_{00}\right|^{1 / 2}}{\partial x^\mu}=0
$$
which is supposed to be supplemented by the equation of state $P=P(\rho)$.

问题 2.

Problem 2
Bondi Accretion: go with the flow. To get some practise working with the equations of GR as well as some insight into relativistic dynamics in a practical problem in astrophysics, consider what is known as (relativistic) Bondi Accretion, the spherical flow of gas into a black hole. (The original Bondi accretion problem was Newtonian accretion onto an ordinary star.) We assume a Schwarzschild metric in the usual spherical coordinates:
$$
g_{00}=-\left(1-2 G M / r c^2\right), g_{r r}=\left(1-2 G M / r c^2\right)^{-1}, g_{\theta \theta}=r^2, g_{\phi \phi}=r^2 \sin ^2 \theta .
$$
2a) First, let us assume that particles are neither created or destroyed. So particle number is conserved. If $n$ is the particle number density in the local rest frame of the flow, then the particle flux is $J^\mu=n U^\mu$, where $U^\mu$ is the flow 4-velocity. Justify this statement, and using $\S 4.5$ in the notes, show that particle number conservation implies:
$$
J_{; \mu}^\mu=0
$$
If nothing depends upon time, show that this integrates to
$$
n u^r\left|g^{\prime}\right|^{1 / 2}=\text { constant }
$$
where $g^{\prime}$ is the determinant of $g_{\mu \nu}$ divided by $\sin ^2 \theta$ and $U^r$ is… well, you tell me what $U^r$ is.

Solution:
2b) We move on to energy conservation, $T_{; \nu}^{t \nu}=0$. (Refer to $\S 4.6$ in the notes.) Show that the only nonvanishing affine connection that we need to use is
$$
\Gamma_{t r}^t=\Gamma_{r t}^t=\frac{1}{2} \frac{\partial \ln \left|g_{t t}\right|}{\partial r}
$$
Derive and solve the energy equation. Show that its solution may be written
$$
\left(P+\rho c^2\right) U^r U_t\left|g^{\prime}\right|^{1 / 2}=\text { constant }
$$
where $U_t=g_{t \mu} U^\mu$, and $\rho$ is the total energy density of the fluid in the rest frame, including any thermal energy.

E-mail: help-assignment@gmail.com  微信:shuxuejun

help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注