Riemann surface
matlab
还在面临金融数学的学习挑战吗?别担心!我们的financial-mathematics-guide团队专业为您解决各种与金融数学相关的问题。我们拥有深厚的专业背景和丰富的经验,能够帮助您完成高水平的作业和论文,让您的学习之路一帆风顺!
以下是一些我们可以帮助您解决的问题:
基本金融数学概念:涵盖各种常用的金融数学概念的定义、性质和分类,如复利、贴现、利率计算等。
金融模型与定价:研究和应用于金融领域的模型和定价理论,如期权定价模型、资产定价模型等。
金融风险管理:介绍金融领域中的风险管理方法和工具,如价值-at-风险、蒙特卡洛模拟等。
金融衍生品:解析金融衍生品的概念、特性和定价方法,如期货、期权、掉期等。
投资组合理论:探讨投资组合构建和优化的理论与实践,包括现代投资组合理论、资本资产定价模型等。
金融时间序列分析:应用时间序列分析方法来研究金融市场的走势和波动性,如自回归模型、移动平均模型等。
金融数学与计算机科学:介绍金融数学在计算机科学中的应用,如量化金融、算法交易等。
无论您面临的金融数学问题是什么,我们都会竭尽全力提供专业的帮助,确保您的学习之旅顺利无阻!

In each case, determine whether $V$ is a vector space. If it is not a vector space, explain why not. If it is, find basis vectors for $V$.
(a) $V$ is the subset of $\mathbb{R}^3$ defined by
$$
4 x-5 y+z=1
$$
(b) Let the vector $\mathbf{w}=\left(w_1, w_2, \cdots, w_n\right)$ represent a portfolio’s holdings, where each component $w_i$ represents the fraction of the portfolio’s total market value in asset $i$. Let $V$ be the set of weight vectors that can represent market-neutral long/short portfolios. The weights $w_i$ satisfy $0<w_i \leq 1$ for long positions, $-1 \leq w_i<0$ for short positions, and
$$
\sum_i w_i=0
$$
(c) $V$ is the set of vectors in $\mathbb{R}^2$ for which $M \mathbf{v}=\mathbf{v}$, where
$$
M=\left(\begin{array}{cc}
0 & -1 \
2 & 3
\end{array}\right) .
$$
Solution:
(a) $V$ is not a vector space since it does not contain the origin (i.e., the zero vector).
(b) $V$ is not a vector space because it is not closed under scalar multiplication or addition, which violate the inequality as well as the budget constraint.
(c) $M$ has eigenvalues of 1 and 2 , so the eigenvector
$$
\mathbf{v}_1=\left(\begin{array}{c}
1 \
-1
\end{array}\right)
$$
is a basis for the vector space $V$.
Calculate the trace and the determinant of the matrix. If the matrix is non-singular, compute its inverse. If the matrix is singular, determine its image and kernel.
(a)
$$
\left(\begin{array}{ll}
1 & 2 \
3 & 4
\end{array}\right)
$$
(b)
$$
\left(\begin{array}{ll}
3 & 4 \
6 & 8
\end{array}\right)
$$
(c)
$$
\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \
-1 & 3
\end{array}\right)
$$
(d)
$$
M=\left(\begin{array}{ll}
1 & \rho \
\rho & 1
\end{array}\right)
$$
(e)
$$
M=\left(\begin{array}{cc}
x & x-x^2 \
1 & 1-x
\end{array}\right)
$$
Solution:
(a)
$$
M=\left(\begin{array}{ll}
1 & 2 \
3 & 4
\end{array}\right), \operatorname{Tr} M=5, \operatorname{Det} M=-2, M^{-1}=\frac{1}{2}\left(\begin{array}{cc}
-4 & 2 \
3 & -1
\end{array}\right)
$$
(b)
$$
M=\left(\begin{array}{ll}
3 & 4 \
6 & 8
\end{array}\right), \operatorname{Tr} M=11, \operatorname{Det} M=0, \operatorname{Im} M=\operatorname{span}\left{\left(\begin{array}{l}
1 \
2
\end{array}\right)\right}, \operatorname{Ker} M=\operatorname{span}\left{\left(\begin{array}{c}
4 \
-3
\end{array}\right)\right}
$$
(c)
$$
M=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \
-1 & 3
\end{array}\right), \operatorname{Tr} M=2, \text { Det } M=1, M^{-1}=\frac{1}{2}\left(\begin{array}{cc}
3 & -1 \
-1 & 1
\end{array}\right)
$$
(d) $M$ is non-singular provided $\rho^2 \neq 1$.
$$
M=\left(\begin{array}{ll}
1 & \rho \
\rho & 1
\end{array}\right), \operatorname{Tr} M=2, \operatorname{Det} M=1-\rho^2, M^{-1}=\frac{1}{1-\rho^2}\left(\begin{array}{cc}
1 & -\rho \
-\rho & 1
\end{array}\right)
$$
(e)
$$
M=\left(\begin{array}{cc}
x & x-x^2 \
1 & 1-x
\end{array}\right), \operatorname{Tr} M=1, \operatorname{Det} M=0, \operatorname{Im} M=\operatorname{span}\left{\left(\begin{array}{l}
x \
1
\end{array}\right)\right}, \operatorname{Ker} M=\operatorname{span}\left{\left(\begin{array}{c}
1-x \
-1
\end{array}\right)\right}
$$

E-mail: help-assignment@gmail.com 微信:shuxuejun
help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务