Riemann surface
matlab
无需担心!我们的量子力学代写专家团队将专业地解决您在量子力学学习中遇到的各种挑战。我们拥有广泛的专业知识和丰富的经验,可以协助您完成高水平的作业和论文,确保您在学习道路上顺利前行!
以下是一些我们可以帮助您解决的问题:
量子力学基础概念:涵盖量子态、算符、测量等各种常用量子力学概念的定义、性质和分类。
薛定谔方程:研究和应用于量子力学中的薛定谔方程及其解析解、数值解等。
量子力学算符:常见的量子力学算符和观测量的性质与应用,如位置算符、动量算符等。
量子力学系统:研究量子力学中不同类型的系统,如简谐振子、氢原子等的量子描述。
量子力学测量:介绍量子力学中测量理论和测量算符的应用,如不确定性原理、测量的正交性等。
量子力学与统计力学:量子力学在统计力学领域的应用,包括量子统计和玻尔兹曼分布等。
量子力学与相对论:介绍量子力学和相对论的关系和量子场论的基本原理。
无论您面临的量子力学问题是什么,我们都会竭尽全力提供专业的帮助,确保您的学习之旅顺利无阻!

Quantum phenomena are often negligible in the “macroscopic” world. Show this numerically for the following cases:
(a) The amplitude of the zero-point oscillation for a pendulum of length $l=1 \mathrm{~m}$ and mass $m=1 \mathrm{~kg}$.
(b) The tunneling probability for a marble of mass $m=5 \mathrm{~g}$ moving at a speed of $10 \mathrm{~cm} / \mathrm{sec}$ against a rigid obstacle of height $H=5 \mathrm{~cm}$ and width $\mathrm{w}=1 \mathrm{~cm}$.
(c) The diffraction of a tennis ball of mass $m=0.1 \mathrm{~kg}$ moving at a speed $v=0.5 \mathrm{~m} / \mathrm{sec}$ by a window of size $1 \times 1.5 \mathrm{~m}^2$.
(Wisconsin)
Solution:
(a) The theory of the harmonic oscillator gives the average kinetic energy as $\bar{V}=\frac{1}{2} E$, i.e., $\frac{1}{2} m \omega^2 A^2=\frac{1}{4} \hbar \omega$, where $w=\sqrt{g / l}$ and $A$ is the root-meansquare amplitude of the zero-point oscillation. Hence
$$
A=\sqrt{\frac{\hbar}{2 m \omega}} \approx 0.41 \times 10^{-17} \mathrm{~m} .
$$
Thus the zero-point oscillation of a macroscopic pendulum is negligible.
(b) If we regard the width and height of the rigid obstacle as the width and height of a gravity potential barrier, the tunneling probability is
$$
\begin{aligned}
T & \approx \exp \left[-\frac{2 w}{\hbar} \sqrt{2 m\left(m g H-\frac{1}{2} m v^2\right)}\right] \
& =\exp \left(-\frac{2 m w}{\hbar} \sqrt{2 g H-v^2}\right),
\end{aligned}
$$
where
$$
\frac{2 m w}{\hbar} \sqrt{2 g H-v^2} \approx 0.9 \times 10^{30}
$$
Hence
$$
T \sim e^{-0.9 \times 10^{30}} \approx 0
$$
That is, the tunneling probability for the marble is essentially zero.
(c) The de Broglie wavelength of the tennis ball is
$$
\lambda=\mathrm{h} / \mathrm{p}=h / m v=1.3 \times 10^{-30} \mathrm{~cm} \text {, }
$$
and the diffraction angles in the horizontal and the vertical directions are respectively
$$
\theta_1 \approx \lambda / D=1.3 \times 10^{-32} \mathrm{rad}, \quad \theta_2 \approx \lambda / L=9 \times 10^{-33} \mathrm{rad} .
$$
Thus there is no diffraction in any direction.
Express each of the following quantities in terms of $\hbar, \mathrm{e}, \mathrm{c}, m=$ electron mass, $M=$ proton mass. Also give a rough estimate of numerical size for each.
(a) Bohr radius (cm).
(b) Binding energy of hydrogen (eV).
(c) Bohr magneton (choosing your own unit).
(d) Compton wavelength of an electron (cm).
(e) Classical electron radius (cm).
(f) Electron rest energy (MeV).
(g) Proton rest energy $(\mathrm{MeV})$.
(h) Fine structure constant.
(i) Typical hydrogen fine-structure splitting (eV).
Solution:
(a) $\mathrm{a}=\hbar^2 / m e^2=5.29 \times 10^{-9} \mathrm{~cm}$.
(b) $\mathrm{E}=m e^4 / 2 \hbar^2=13.6 \mathrm{eV}$.
(c) $\mu_B=e \hbar / 2 m c=9.27 \times 10^{-21} \mathrm{erg} \cdot \mathrm{Gs}^{-1}$.
(d) $\lambda=2 \pi \hbar / m c=2.43 \times 10^{-10} \mathrm{~cm}$.
(e) $r_e=e^2 / m c^2=2.82 \times 10^{-13} \mathrm{~cm}$.
(f) $E_e=m c^2=0.511 \mathrm{MeV}$.
(g) $E_p=M c^2=938 \mathrm{MeV}$.
(h) $\alpha=e^2 / \hbar c=7.30 \times 10^{-3} \approx 1 / 137$.
(i) $\mathrm{AE}=e^8 m c^2 / 8 \hbar^2 c^4=\frac{1}{8} \alpha^4 m c^2=1.8 \times 10^{-4} \mathrm{eV}$

E-mail: help-assignment@gmail.com 微信:shuxuejun
help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务