Riemann surface
matlab

无需担心!我们的宇宙学代写专家团队将专业地解决您在宇宙学学习中遇到的各种挑战。我们拥有广泛的专业知识和丰富的经验,可以协助您完成高水平的作业和论文,确保您在学习道路上顺利前行!

以下是一些我们可以帮助您解决的问题:

宇宙学基础概念:涵盖宇宙学的基本概念,如宇宙膨胀模型、宇宙演化等。

宇宙微波背景辐射:研究宇宙背景辐射的起源、性质和观测方法。

宇宙结构形成:探索宇宙结构的形成过程,如星系的形成和演化。

宇宙学中的暗物质和暗能量:介绍暗物质和暗能量的理论和观测证据。

宇宙学模型和参数估计:研究宇宙学模型的构建和参数估计方法。

宇宙学中的数值模拟:介绍宇宙学中的数值模拟方法,如N体模拟等。

宇宙学中的天体物理过程:探讨宇宙中的天体物理过程,如超新星爆发、引力透镜等。

无论您面临的宇宙学问题是什么,我们都会竭尽全力提供专业的帮助,确保您的学习之旅顺利无阻!

问题 1.

Problem 4. (30 points)
A bit about inflation. Let’s assume for the moment that inflation began when the universe was $10^{-36} \mathrm{~s}$ old, and ended when it was $10^{-33} \mathrm{~s}$. I want you to suppose that before inflation, the density of the universe was critical, with all of the contents being made up of a fluid with $w=1 / 3$.
a) ( 3 points) Write down the Friedman equation for the period before inflation.
b) ( 6 points) What was the Hubble constant as a function of time?
c) ( 3 points) What was the Hubble constant at the beginning of inflation?



a) $w=1 / 3$ describes radiation, meaning that the Friedmann equation will only have one term corresponding to $\Omega_r$.
$$
\frac{1}{H_0^2}\left(\frac{\dot{a}}{a}\right)^2=\frac{1}{a^4}
$$
3
b) Simplifying the Friedmann equation, we have.
$$
H_0=a \dot{a}
$$
Integrating this by separation of variables, we find that
$$
H_0 \Delta t=\frac{1}{2} \Delta\left(a^2\right)
$$
c) Let inflation begin when $a=1$, and integrate from $a=0$ and $t=0$. This implies that
$$
\begin{gathered}
H_0=\frac{1}{2} \frac{\Delta a^2}{\Delta t} \
H_0=\frac{1}{2} \frac{1}{\left(10^{-36} \mathrm{~s}\right)} \
H_0=5 \times 10^{35} \mathrm{~s}^{-1}
\end{gathered}
$$

approx 0.8
$$

问题 2.

d) ( 3 points) If the density is critical, what was the effective mass density of the field?
e) (3 points) What was the equivalent temperature? Use $a_B T^4=\rho_c c^2$.
f) (3 points) What energy (in GeV) does that correspond to?

d) Equation 4.31 relates $H_0$ to the critical density.
$$
\begin{gathered}
\rho_{c, 0}=\frac{3 H_0^2}{8 \pi G} \
\rho_{c, 0} \approx \frac{1}{8} \frac{\left(5 \times 10^{35} \mathrm{~s}^{-1}\right)^2}{\left(6.11 \times 10^{-11} \mathrm{~s}^{-2} \cdot\left(\mathrm{kg} / \mathrm{m}^3\right)^{-1}\right)} \
\rho_{c, 0} \approx 5 \times 10^{80} \frac{\mathrm{kg}}{\mathrm{m}^3}
\end{gathered}
$$
e) Equation 2.29 gives us a value for $a_B$, which relates the blackbody temperature of the universe to the energy density:
$$
\begin{gathered}
a_B T^4=\rho_{c, 0} c^2 \
T=\left(\frac{\rho_{c, 0} c^2}{a_B}\right)^{1 / 4} \
T=\left(\frac{\left(5 \times 10^{80} \frac{\mathrm{kg}}{\mathrm{m}^3}\right)\left(3 \times 10^8 \frac{\mathrm{m}}{\mathrm{s}}\right)^2}{7.566 \times 10^{-16} \frac{\mathrm{J}}{\mathrm{m}^3} \cdot \mathrm{K}^{-4}}\right)^{1 / 4} \
T \approx 2 \times 10^{28} \mathrm{~K}
\end{gathered}
$$
f) Using the temperature we find,
$$
E=k_B T
$$
$$
E=\left(8.617 \times 10^{-14} \mathrm{GeV} \cdot \mathrm{K}^{-1}\right)\left(2 \times 10^{28} \mathrm{~K}\right)
$$
$$
E \approx 2 \times 10^{15} \mathrm{GeV}
$$

E-mail: help-assignment@gmail.com  微信:shuxuejun

help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注