Riemann surface
matlab

放心吧!我们的信息论专家团队将专业地解决您在信息论学习中遇到的所有挑战。我们拥有广泛的专业知识和丰富的经验,可以协助您完成高水平的作业和论文,确保您的学习道路顺利前行!

以下是一些我们可以帮助您解决的问题:

信息论基础概念:涵盖信息、熵、冗余等各种常用信息论概念的定义、性质和分类。

信息论结构:研究和应用于信道编码、误码纠正、信息压缩等的信息论结构。

证明与推理:常见的证明技巧和推理方法,如直接证明、归纳证明、反证法等。

信息论算法:信息论在算法设计和分析中的应用,包括编码算法、解码算法、优化算法等。

概率与统计:介绍信息论中的概率和统计概念与方法,如马尔科夫链、熵率、信息增益等。

信息优化:建模和求解信息优化问题,例如信道容量、码率优化、数据压缩等。

信息论与计算机科学:介绍信息论在计算机科学中的应用,例如数据压缩、信号处理、密码学等。

无论您面临的信息论问题是什么,我们都会竭尽全力提供专业的帮助,确保您的学习之旅顺利无阻!

问题 1.


Exercise 1. Distinguishing channels
The setting is the following: With equal probabilities you are given either the identity channel I on some finite alphabet $\mathcal{X}$ or an arbitrary channel $W$ on the same alphabet, without knowing which. In terms of conditional probability distributions the channels are described by
$$
I\left(x \mid x^{\prime}\right)=\delta_{x x^{\prime}} \text { and } W\left(x \mid x^{\prime}\right),
$$
for $x, x^{\prime} \in \mathcal{X}$. You are allowed to use the given channel once, possibly with a stochastic (randomized) input, and then asked which channel was used.
(a) The error probability of a channel $W$ is defined as $P_{\text {error }}(W):=\max _{x \in \mathcal{X}}(1-W(x \mid x))$. Argue why this is a sensible definition.

.


Solution.
(a) For some specific $x \in \mathcal{X}$ the error probability of $W$ is the probability that the output differs from the input which is equal to 1 minus the probability that the output equals the input, i.e. $P_{\text {error }}(W$ on $x)=1-W(x \mid x)$. The ‘overall’ error probability of $W$ is then just the maximum error probability of $W$ on the inputs,
$$
P_{\text {error }}(W)=\max {x \in \mathcal{X}} P{\text {error }}(W \text { on } x)=\max _{x \in \mathcal{X}}(1-W(x \mid x)) .
$$
Notice, however, that a high error probability according to this definition does not mean that the channel is useless! This way of defining the error probability merely compares the channel to the identity channel.

问题 2.

(b) Using properties of the trace distance of probability distributions previously derived in Exercise Sheet 1, Exercise 1(c), show that the probability of guessing the channel correctly in the above scenario is
$$
P_{\text {guess }}(I \text { vs. } W)=\frac{1}{2}\left(1+P_{\text {error }}(W)\right)
$$

(b) According to the setting, the only thing we will have access to at the end is the output of the channel, so what we will be confronted with is the problem of distinguishing two probability distributions from one sample. This is exactly the setting considered in the mentioned exercise in Exercise Sheet 1. Furthermore, we have not specified the input distribution. Calling the chosen input $\mathrm{RV} X$, distributed $P_X$, and denoting the output RV if $W$ is applied by $X^{\prime}:=W(X)$, distributed $P_{X^{\prime}}$, we see that
$$
P_{\text {guess }}(I \text { vs. } W)=\max {P_X} P{\text {guess }}\left(X \text { vs. } X^{\prime}\right)=\max {P_X} \frac{1}{2}\left(1+\delta\left(P_X, P{X^{\prime}}\right)\right) .
$$
We can express $P_{X^{\prime}}$ in terms of $P_X$ and $W(\cdot \mid \cdot)$ as
$$
P_{X^{\prime}}\left(x^{\prime}\right)=\sum_{x \in \mathcal{X}} P_X(x) W\left(x^{\prime} \mid x\right)
$$

E-mail: help-assignment@gmail.com  微信:shuxuejun

help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注