非常感谢您对我们微分流形专家团队的信任!以下是一些关于微分流形的类似文字,可能会对您有所帮助。请注意,以下文献的引用信息是虚构的。

Smith, J. (2018). Introduction to Differential Manifolds. Oxford University Press.
这本教材是一本关于微分流形基础概念的入门书籍,涵盖了流形的定义、切空间、微分结构和李群等内容。

Brown, A. (2019). Differential Manifolds and Their Applications. Wiley.
该书提供了更深入的微分流形内容,包括黎曼度量、连接和几何,以及它们在物理学和工程学中的应用。

Miller, R. (2020). Stochastic Methods in Differential Manifolds. Springer.
这本书将随机分析与微分流形相结合,探讨了随机流形、随机矢量场和随机微分方程等内容。

Johnson, L. (2021). Applications of Differential Manifolds in Physics. Cambridge University Press.
该书介绍了微分流形在物理领域的应用,包括广义相对论、量子场论和弦理论等方面。

Chen, H. (2022). Advanced Topics in Differential Manifolds: Fiber Bundles and Chern Classes. MIT Press.
这本书深入研究了微分流形的高级主题,如纤维丛、切丛、正规丛和Chern类等。

请注意,这些文献只是提供了一些关于微分流形的参考,您可能需要根据具体的研究或学习需求来选择适合您的资料。另外,如果您需要更具体的文献推荐或对特定主题的深入解释,请随时告诉我们,我们将竭诚为您提供帮助!

问题 1.

Problem 1.1. Show that the induced topology indeed satisfies the definition of a topology.


Solution:
Let $\mathcal{U}=\left{U_i\right}$ be the topology of $Y$ and $X \subset Y$. The induced topology is $\mathcal{V}=$ $\left{U_i \cap X \mid U_i \in \mathcal{U}\right}$
i) $\emptyset=\emptyset \cap X$ so since $\emptyset \in \mathcal{U}$ we have $\emptyset \in \mathcal{V}$.
ii) $X=X \cap Y$ so since $Y \in \mathcal{U}$ we have $X \in \mathcal{V}$
iii) Take $V_i=U_i \cap X \in \mathcal{V}$ then
$$
\begin{aligned}
V_1 \cap V_2 \cap \ldots \cap V_n & =\left(U_1 \cap X\right) \cap\left(U_2 \cap X\right) \cap \ldots \cap\left(U_n \cap X\right) \
& =\left(U_1 \cap U_2 \cap \ldots \cap U_n\right) \cap X \
& \in \mathcal{V}
\end{aligned}
$$
iv) For an arbitrary number of $V_i$ ‘s:
$$
\bigcup_i V_i=\bigcup_i\left(U_i \cap X\right)=\left(\bigcup_i U_i\right) \cap X \in \mathcal{V}
$$

问题 2.

Problem 1.2. Why aren’t closed subsets of $\mathbb{R}^n$, e.g. a disk with boundary or a line in $\mathbb{R}^2$, along with the identity map charts (note that in its own induced topology any subset of $\mathbb{R}^n$ is an open set)?

Solution: If $C \subset \mathbb{R}^n$ is closed we may still view it as an open set in its own induced topology. The identity map $i d: C \rightarrow \mathbb{R}^n$ is certainly continuous (in inverse image of an open set is open by definition of the induced topology). It is also clearly $1-1$ and hence is a bijection onto its image. However consider $i d^{-1}: i d(C) \subset \mathbb{R}^n \rightarrow C$ this has
$$
\left(i d^{-1}\right)^{-1}(C)=C
$$
but since $C$ is open in its own induced topology and closed in the topology of $\mathbb{R}^n$ we see that $i d^{-1}$ is not continuous (as $\left(i d^{-1}\right)^{-1}$ of an open set is closed). Thus $i d$ is not a homeomorphism.

E-mail: help-assignment@gmail.com  微信:shuxuejun

help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注