Riemann surface
matlab
还在面临黎曼曲面的学习挑战吗?别担心!我们的riemann-surface-guide团队专业为您解决流形、复结构、亚纯函数等方面的问题。我们拥有深厚的专业背景和丰富的经验,能帮您完成高水平的作业和论文,让您的学习之路一帆风顺!
以下是一些我们可以帮助您解决的问题:
黎曼曲面:黎曼曲面的定义、性质和分类,如亚纯结构、曲面的亏格等。
复结构:复结构的概念、性质和作用,复结构与黎曼度量的关系,复结构的变换和共形变换。
亚纯函数:亚纯函数的定义、性质和应用,亚纯函数在黎曼曲面上的解析性质和全纯函数的概念。
黎曼映射定理:黎曼映射定理的表述和证明,映射定理在黎曼曲面理论中的重要性和应用。
黎曼曲面的拓扑性质:曲面的拓扑分类、紧性和连通性,黎曼曲面上的全纯函数的存在性和唯一性。
黎曼曲面的剖分和覆盖:曲面的剖分和覆盖的概念、构造和性质,剖分和覆盖在曲面理论和复函数论中的应用。
无论您面临的黎曼曲面问题是什么,我们都会尽力为您提供专业的帮助,确保您的学习之旅顺利无阻!

Example 1. As our first example, we will consider the case in which $c_k$ is always chosen as the right endpoint of the interval $\left[x_{k-1}, x_k\right]$. If we take a regular partition with $n$ intervals, then each interval has length $\triangle x=\frac{b-a}{n}$, and the $k^{\text {th }}$ endpoint is
$$
x_k=a+k \Delta x
$$
The Riemann sum becomes
$$
R=\sum_{k=1}^n f(a+k \Delta x) \triangle x .
$$
Suppose we would like to approximate the integral
$$
\int_0^2 e^{-x^2} d x
$$
with $n=4$. We have $\Delta x=\frac{2-0}{4}=.5$ and the values
$$
\begin{aligned}
& x_0=0 \
& x_1=.5 \
& x_2=1 \
& x_3=1.5 \
& x_4=2.0 .
\end{aligned}
$$
To four decimal places, the correct value is .8821 .
One interesting aspect of the Riemann sum is that the points $c_k$ need not be chosen in the same place on each interval. That is, suppose we partition the interval $[0,1]$ with $0=x_0<x_1=\frac{1}{2}<x_2=1$. In this case, a possible Riemann sum is
$$
f(0) \frac{1}{2}+f(1) \frac{1}{2}
$$Here $\Delta x_1=\triangle x_2=\frac{1}{2}$, and we have chosen $c_1$ as the left endpoint of the interval $\left[0, \frac{1}{2}\right]$ and $c_2$ as the right endpoint of the interval $\left[\frac{1}{2}, 1\right]$.
The Riemann sum is
$$
R=\sum_{k=1}^4 f(0+.5 k) .5=.5\left(e^{-.5^2}+e^{-1^2}+e^{-1.5^2}+e^{-2^2}\right)=.6352 .
$$
More generally, we can write a MATLAB function M-file that carries out this calculation for any function $f$ (defined as an inline function), endpoints $a$ and $b$ and regular partition with $n$ points. See rsum1.m.
function value $=$ rsum $1(\mathrm{f}, \mathrm{a}, \mathrm{b}, \mathrm{n})$
$\%$ RSUM1: Computes a Riemann Sum for the function $\mathrm{f}$ on
$\%$ the interval $[\mathrm{a}, \mathrm{b}]$ with a regular partition of $\mathrm{n}$ points.
\% The points on the intervals are chosen as the right endpoints.
value $=0 ;$
$\mathrm{dx}=(\mathrm{b}-\mathrm{a}) / \mathrm{n} ;$
for $\mathrm{k}=1: \mathrm{n}$
$\mathrm{c}=\mathrm{a}+\mathrm{k}^* \mathrm{dx} ;$
value $=\mathrm{value}+\mathrm{f}(\mathrm{c}) ;$
end
value $=\mathrm{dx}$; value;
function value $=\operatorname{rsum} 1(f, a, b, n)$
\%RSUM1: Computes a Riemann Sum for the function $f$ on
\% the interval $[\mathrm{a}, \mathrm{b}]$ with a regular partition of $\mathrm{n}$ points.
\%The points on the intervals are chosen as the right endpoints.
value $=0$
$\mathrm{dx}=(\mathrm{b}-\mathrm{a}) / \mathrm{n} ;$
for $\mathrm{k}=1: \mathrm{in}$
$\mathrm{c}=\mathrm{a}+\mathrm{k}^* \mathrm{dx}$
value $=$ value $+f(c)$
end
value $=\mathrm{dx}^*$ value;
We run this in MATLAB with the following lines in the Command Window.
$>>\mathrm{f}=\operatorname{inline}\left(\exp \left(-\mathrm{x}^{\wedge} 2\right)^{\prime}\right)$
$\mathrm{f}=$
Inline function:
$\mathrm{f}(\mathrm{x})=\exp \left(-\mathrm{x}^{\wedge} 2\right)$
$>>\mathrm{rsum} 1(\mathrm{f}, 0,2,4)$
ans $=$
0.6352
$>>\mathrm{rsum} 1(\mathrm{f}, 0,2,10)$
ans $=$
0.7837
$>>\mathrm{rsum} 1(\mathrm{f}, 0,2,100)$
ans $=$
0.8723
$>>\mathrm{rsum} 1(\mathrm{f}, 0,2,1000)$
ans $=$
0.8811
$>>\mathrm{f}=\operatorname{inline}\left(\exp \left(-\mathrm{x}^{\wedge} 2\right)^{\prime}\right)$
$\mathrm{f}=$
Inline function:
$\mathrm{f}(\mathrm{x})=\exp \left(-\mathrm{x}^{\wedge} 2\right)$
$>>\operatorname{rsum} 1(\mathrm{f}, 0,2,4)$
ans $=$
0.6352
$>>\operatorname{rsum} 1(\mathrm{f}, 0,2,10)$
ans $=$
0.7837
$>>\operatorname{rsum} 1(\mathrm{f}, 0,2,100)$
ans $=$
0.8723
$>>\operatorname{rsum} 1(\mathrm{f}, 0,2,1000)$
ans $=$
0.8811
Example 2. As our second example, we will consider the case in which $c_k$ is randomly selected on the interval $\left[x_{k-1}, x_k\right]$. In this case, we revise rsum1.m into rsum2.m.
function value $=\mathrm{rsum} 2(\mathrm{f}, \mathrm{a}, \mathrm{b}, \mathrm{n})$
\%RSUM2: Computes a Riemann Sum for the function $f$ on
\%the interval $[\mathrm{a}, \mathrm{b}]$ with a regular partition of $\mathrm{n}$ points.
\% The points on the intervals are chosen randomly.
value $=0$;
$\mathrm{dx}=(\mathrm{b}-\mathrm{a}) / \mathrm{n} ;$
for $\mathrm{k}=1: \mathrm{n}$
$\mathrm{c}=\mathrm{dx}$ rand $+\left(\mathrm{a}+(\mathrm{k}-1)^* \mathrm{dx}\right) ;$
value $=$ value $+\mathrm{f}(\mathrm{c})$;
end
value $=\mathrm{dx}^*$ value;
The only tricky line here is the one that defines $c_k$ as a random number on the interval $\left[x_{k-1}, x_k\right]$. In order to avoid a digression on the simulation of random variables, let’s simply accept that this line works. ${ }^1$ The implementation is as follows (assuming $f(x)=e^{-x^2}$ has already been defined as an inline function).
$$
\begin{aligned}
& >>\operatorname{rsum} 2(\mathrm{f}, 0,2,10) \
& \text { ans }= \
& 0.8665 \
& >>\operatorname{rsum} 2(\mathrm{f}, 0,2,100) \
& \text { ans }= \
& 0.8818 \
& >>\operatorname{rsum} 2(\mathrm{f}, 0,2,1000) \
& \text { ans }= \
& 0.8821
\end{aligned}
$$
Notice that your values may vary slightly from these due to the random nature of the program. Nonetheless, you should find that Riemann sums based on random values are actually converging more rapidly to the correct solution than did Riemann sums based on right endpoints.

E-mail: help-assignment@gmail.com 微信:shuxuejun
help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务