Riemann surface
matlab

无需担心!我们的线性规划专家团队将专业地解决您在运筹学学习中遇到的各种挑战。我们拥有广泛的专业知识和丰富的经验,可以协助您完成高水平的作业和论文,确保您在学习道路上顺利前行!

以下是一些我们可以帮助您解决的问题:

线性规划基础概念:涵盖决策变量、约束条件、目标函数等各种常用线性规划概念的定义、性质和分类。

线性规划模型:研究和应用于资源分配、生产调度、物流管理等的线性规划模型。

证明与推理:常见的证明技巧和推理方法,如直接证明、归纳证明、反证法等。

线性规划算法:线性规划在算法设计和分析中的应用,包括单纯形法、对偶理论、内点法等。

敏感度分析:介绍线性规划中的敏感度分析概念与方法,如影子价格、减少成本等。

线性优化:建模和求解线性优化问题,例如网络流优化、整数线性规划等。

线性规划与实际应用:介绍线性规划在商业、工业、金融等领域中的应用。

无论您面临的线性规划问题是什么,我们都会竭尽全力提供专业的帮助,确保您的学习之旅顺利无阻!

问题 1.


MeatiesYummies
Sales price per package$2.80$2.00
Raw materials per package
Cereal2.0lb.3.0lb.
Meat3.0lb.1.5lb.
Variable cost-blending and packing$0.25 package$0.20 package
Resources
quad Production capacity for Meaties90,000 packages per month
Cereal available per month400,000lb.
Meat available per month300,000lb.

.


Solution:
The Decision Variables. We first identify those things over which we have control: the decision variables. In this problem we have direct control over two quantities: the number of packages of Meaties to make each month, and the number of packages of Yummies to make each month. Within the model these two quantities appear repeatedly, so we represent them in a simple fashion. We designate these variables by the symbols $M$ and $Y$.
$M=$ number of packages of Meaties to make each month
$Y=$ number of packages of Yummies to make each month
Note that the amount of meat used each month and the amount of cereal used each month are not good choices for the variables. First, we control these only indirectly through our choice of $M$ and $Y$. More important, using these as variables could lead to ambiguous production plans. Determining how much cereal and meat to use in production does not tell us how to use it-how much of each dog food to make. In contrast, after determining the values for $M$ and $Y$, we know what to produce and how much meat and cereal are needed.

问题 2.

Grain{:[” Minimum “],[” Daily “],[” Requirement “]:}
123(units)
NutrientA203070110
NutrientB1010018
NutrientC5030090
NutrientD62.51014
Cost (c//lb)413696

Solution
The quantities that the manager controls are the amounts of each grain to feed each sheep daily. We define
$x_j=$ number of pounds of grain $j(=1,2,3)$ to feed each sheep daily
Note that the units of measure are completely specified. In addition, the variables are expressed on a per sheep basis. If we minimize the cost per sheep, we minimize the cost for any group of sheep. The daily feed cost per sheep will be
(cost per lb of grain $j) \times(\mathrm{lb}$. of grain $j$ fed to each sheep daily)
That is, the objective function is to
$$
\text { Minimize } z=41 x_1+36 x_2+96 x_3
$$
Why can’t the manager simply make all the variables equal to zero? This keeps costs at zero, but the manager would have a flock of dead sheep, because there are minimum nutrient constraints that must be satisfied. The values of the variables must be chosen so that the number of units of nutrient A consumed daily by each sheep is equal to or greater than 110 . Expressing this in terms of the variables yields
$$
20 x_1+30 x_2+70 x_3 \geq 110
$$
The constraints for the other nutrients are
$$
\begin{array}{rr}
10 x_1+ & 10 x_2 \geq 18 \
50 x_1+ & 30 x_2 \geq 90 \
6 x_1+2.5 x_2+10 x_3 \geq 110
\end{array}
$$
and finally
$$
\text { all } x_j s \geq 0
$$
The optimal solution to this problem (obtained using a computer software package) is $x_1=0.595, x_2=2.008, x_3=0.541$, and $z=148.6$ cents.

e will shade the half-plane containing $(0,0)$.
To graph Line (2), we will find its intercepts.

E-mail: help-assignment@gmail.com  微信:shuxuejun

help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注