Riemann surface
matlab
无需担心!我们的数学建模专家团队将专业地解决您在数学建模学习中遇到的各种挑战。我们拥有广泛的专业知识和丰富的经验,可以协助您完成高水平的作业和论文,确保您在学习道路上顺利前行!
以下是一些我们可以帮助您解决的问题:
数学建模基础概念:涵盖变量、函数、参数等各种常用数学建模概念的定义、性质和分类。
数学模型构建:研究和应用于物理、化学、生物、经济等领域的数学模型构建。
证明与推理:常见的证明技巧和推理方法,如直接证明、归纳证明、反证法等。
模型求解算法:数学建模在算法设计和分析中的应用,包括最优化算法、迭代算法、模拟算法等。
模型的验证与评估:介绍数学建模中的模型验证和评估概念与方法,如敏感度分析、误差分析等。
数学优化:建模和求解数学优化问题,例如线性规划、非线性规划、动态规划等。
数学建模与现实问题:介绍数学建模在解决实际问题中的应用,例如流量优化、能源管理、疾病传播等。
无论您面临的数学建模问题是什么,我们都会竭尽全力提供专业的帮助,确保您的学习之旅顺利无阻!

TASK. 1.
Compute the singular value decomposition (SVD) of the matrix
$$
B=\left[\begin{array}{ccc}
3 & 1 & 1 \
-1 & 3 & 1
\end{array}\right] .
$$
.
SOLUTION OF THE TASK 2.
a. The left upper $2 \times 2$ submatrix has determinant -1 and hence the first two columns are linearly independent. The third column is the sum of the first two and so $\operatorname{rank} A=2$.
b. We choose an invertible $2 \times 2$ submatrix of $A$, replace it with its transposed inverse, replace the other entries with $0 \mathrm{~s}$ and transpose the matrix obtained:
c. The candidate for the solution is
$$
G b=\left[\begin{array}{c}
1 \
-1 \
0
\end{array}\right] .
$$
We can check that $A(G b)=b$ and hence $G b$ is really a solution of the system. All solutions are of the form
$$
\begin{aligned}
G b+(G A-I) z & =\left[\begin{array}{c}
1 \
-1 \
0
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 1 \
0 & 0 & 1 \
0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
z_1 \
z_2 \
z_3
\end{array}\right] \
& =\left[\begin{array}{c}
1+z_3 \
-1+z_3 \
-z_3
\end{array}\right],
\end{aligned}
$$
where $z_1, z_2, z_3 \in \mathbb{R}$.
SOLUTION OF THE TASK 3.
TASK. 5.
Let
$$
A=\left[\begin{array}{cc}
1 & -1 \
1 & 1 \
-1 & 1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
1 \
-1 \
1
\end{array}\right]
$$
a. Find the Moore-Penrose inverse $A^{\dagger}$ of the matrix $A$.
b. Does the system $A x=b$ have a solution?
c. If the system is solvable, find the solution closest to the origin. If the system does not have a solution, find the vector $x^{+}$such that the error $\left|A x^{+}-b\right|_2$ is the smallest possible.
d. Find the Moore-Penrose inverse $\left(A^{\dagger}\right)^{\dagger}$ of $A^{\dagger}$.
SOLUTION OF THE TASK 5.
ن
a. Since rank $A=2$, the matrix $A^T A \in \mathbb{R}^{2 \times s}$ is invertible and hence $A^{\dagger}=\left(A^T A\right)^{-1} A^T$. So,
$$
A^{\dagger}=\left[\begin{array}{cc}
3 & -1 \
-1 & 3
\end{array}\right]^{-1} \cdot A^T=\left[\begin{array}{cc}
\frac{3}{8} & \frac{1}{8} \
\frac{1}{8} & \frac{3}{8}
\end{array}\right]^{-1} \cdot A^T=\left[\begin{array}{ccc}
\frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \
-\frac{1}{4} & \frac{1}{2} & \frac{1}{4}
\end{array}\right]
$$
b. If the systema $A x=b$ has a solution, then one of the solutions is $x^{+}=A^{\dagger} b$. So, we have to compute $A x^{+}$and see, if the result is $b$.
$$
x^{+}=A^{\dagger} b=\left[\begin{array}{c}
-\frac{1}{2} \
\frac{1}{2}
\end{array}\right] \quad \Rightarrow \quad A x^{+}=\left[\begin{array}{c}
0 \
-1 \
0
\end{array}\right] \neq b .
$$
So the system $A x=b$ does not have a solution.
c. The vector $x^{+}$such that the error $\left|A x^{+}-b\right|_2$ is the smallest possible, is
$$
A^{\dagger} b=\left[\begin{array}{c}
-\frac{1}{2} \
\frac{1}{2}
\end{array}\right]
$$
d. The Moore-Penrose inverse of $A^{\dagger}$ is always $A$ by the symmetry in $A$ and $A^{\dagger}$ in the conditions the MP inverse must satisfy.

E-mail: help-assignment@gmail.com 微信:shuxuejun
help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务