Riemann surface
matlab
放心吧!我们的随机分析专家团队将以同样的热情帮助你解决问题。我们具备广泛的专业知识和丰富的实践经验,能够协助你应对随机分析学习中的各种挑战。无论是高难度的作业,还是研究论文,我们都能为您提供帮助,确保您在学习过程中顺利进展!
以下是一些我们可以帮助您解决的问题:
随机分析基础概念:包括随机分析的基本概念,如马尔科夫链、布朗运动和随机过程等。
随机分析建模:深入研究随机分析的建模过程,包括如何构建随机过程模型,参数估计以及模型验证。
随机分析推断和学习:介绍随机分析中的推断方法和学习技术,包括概率度量、随机积分和随机微分等。
随机分析的应用:探讨随机分析在各种实际问题中的应用,如金融市场模型、随机控制和预测问题等。
高级随机分析主题:包括随机微分方程、随机偏微分方程和随机分析的扩展模型等。
随机分析的软件工具:使用如Matlab、Python、R和Wolfram等工具进行随机分析的建模和推断。
随机分析在各领域的应用:研究随机分析在各种领域的应用,如金融工程、运筹学、风险管理和复杂系统分析等。
无论您在随机分析方面面临的问题是什么,我们都将尽全力为您提供专业的帮助,确保您的学习之旅顺利无阻!

2.1 Example Sheet 2: questions
Example 1.3 (Product $\sigma$-algebras). Of great importance for probability theory are product $\sigma$-algebras. Let $\mathcal{I}$ be an arbitrary index set, and for each $i \in \mathcal{I}$ let $\left(X_i, \mathcal{A}i\right)$ be a measurable space. The Cartesian product space $X=\prod{i \in \mathcal{I}} X_i$ is the space of all functions $x: \mathcal{I} \rightarrow \bigcup_{i \in \mathcal{I}} X_i$ such that $x(i) \in X_i$ for each $i$. Alternate notation for $x(i)$ is $x_i$. Coordinate projection maps on $X$ are defined by $f_i(x)=x_i$, in other words $f_i$ maps $X$ onto $X_i$ by extracting the $i$-coordinate of the $\mathcal{I}$-tuple $x$. The product $\sigma$-algebra $\bigotimes_{i \in \mathcal{I}} \mathcal{A}_i$ is by definition the $\sigma$-algebra generated by the coordinate projections $\left{f_i\right.$ : $i \in \mathcal{I}}$
1.1.2. Measures. Let us move on to discuss the second fundamental ingredient of integration. Let $(X, \mathcal{A})$ be a measurable space. A measure is a function $\mu: \mathcal{A} \rightarrow[0, \infty]$ that satisfies these properties:
(i) $\mu(\emptyset)=0$.
(ii) If $\left{A_i\right}$ is a sequence of sets in $\mathcal{A}$ such that $A_i \cap A_j=\emptyset$ for all $i \neq j$ (pairwise disjoint is the term), then
$$
\mu\left(\bigcup_i A_i\right)=\sum_i \mu\left(A_i\right) .
$$
Property (ii) is called countable additivity. It goes together with the fact that $\sigma$-algebras are closed under countable unions, so there is no issue about whether the union $\bigcup_i A_i$ is a member of $\mathcal{A}$. The triple $(X, \mathcal{A}, \mu)$ is called a measure space.
If $\mu(X)<\infty$ then $\mu$ is a finite measure. If $\mu(X)=1$ then $\mu$ is a probability measure. Infinite measures arise naturally. The ones we encounter satisfy a condition called $\sigma$-finiteness: $\mu$ is $\sigma$-finite if there exists a sequence of measurable sets $\left{V_i\right}$ such that $X=\bigcup V_i$ and $\mu\left(V_i\right)<\infty$ for all $i$. A measure defined on a Borel $\sigma$-algebra is called a Borel measure.
Example 1.26. Let $A$ be an event such that $0<P(A)<1$, and $\mathcal{A}=$ $\left{\emptyset, \Omega, A, A^c\right}$. Then
$$
E(X \mid \mathcal{A})(\omega)=\frac{E\left(\mathbf{1}A X\right)}{P(A)} \cdot \mathbf{1}_A(\omega)+\frac{E\left(\mathbf{1}{\left.A^c X\right)}\right.}{P\left(A^c\right)} \cdot \mathbf{1}{A^c}(\omega) $$ Let us check (1.32) for $A$. Let $Y$ denote the right-hand-side of (1.35). Then $$ \begin{aligned} \int_A Y d P & =\int_A \frac{E\left(\mathbf{1}_A X\right)}{P(A)} \mathbf{1}_A(\omega) P(d \omega)=\frac{E\left(\mathbf{1}_A X\right)}{P(A)} \int_A \mathbf{1}_A(\omega) P(d \omega) \ & =E\left(\mathbf{1}_A X\right)=\int_A X d P . \end{aligned} $$ A similar calculation checks $\int{A^c} Y d P=\int_{A^c} X d P$, and adding these together gives the integral over $\Omega$. $\emptyset$ is of course trivial, since any integral over $\emptyset$ equals zero. See Exercise 1.15 for a generalization of this.
Here is a concrete case. Let $X \sim \operatorname{Exp}(\lambda)$, and suppose we are allowed to know whether $X \leq c$ or $X>c$. What is our updated expectation for $X$ ? To model this, let us take $(\Omega, \mathcal{F}, P)=\left(\mathbf{R}{+}, \mathcal{B}{\mathbf{R}_{+}}, \mu\right)$ with $\mu(d x)=\lambda e^{-\lambda x} d x$, the identity random variable $X(\omega)=\omega$, and the sub- $\sigma-$ algebra $\mathcal{A}={\Omega, \emptyset,[0, c],(c, \infty)}$. For example, for any $\omega \in(c, \infty)$, we would compute
$$
\begin{aligned}
E(X \mid \mathcal{A})(\omega) & =\frac{1}{\mu(c, \infty)} \int_c^{\infty} x \lambda e^{-\lambda x} d x=e^{\lambda c}\left(c e^{-\lambda c}+\lambda^{-1} e^{-\lambda c}\right) \
& =c+\lambda^{-1}
\end{aligned}
$$
You probably knew the answer from the memoryless property of the exponential distribution? If not, see Exercise 1.13. Exercise 1.16 asks you to complete this example.
The next theorem lists the main properties of the conditional expectation. Equalities and inequalities concerning conditional expectations are almost sure statements, although we did not indicate this below, because the conditional expectation is defined only up to null sets.

E-mail: help-assignment@gmail.com 微信:shuxuejun
help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务