Riemann surface
matlab

无需担心!我们的线性规划专家团队将专业地解决您在运筹学学习中遇到的各种挑战。我们拥有广泛的专业知识和丰富的经验,可以协助您完成高水平的作业和论文,确保您在学习道路上顺利前行!

以下是一些我们可以帮助您解决的问题:

线性规划基础概念:涵盖决策变量、约束条件、目标函数等各种常用线性规划概念的定义、性质和分类。

线性规划模型:研究和应用于资源分配、生产调度、物流管理等的线性规划模型。

证明与推理:常见的证明技巧和推理方法,如直接证明、归纳证明、反证法等。

线性规划算法:线性规划在算法设计和分析中的应用,包括单纯形法、对偶理论、内点法等。

敏感度分析:介绍线性规划中的敏感度分析概念与方法,如影子价格、减少成本等。

线性优化:建模和求解线性优化问题,例如网络流优化、整数线性规划等。

线性规划与实际应用:介绍线性规划在商业、工业、金融等领域中的应用。

无论您面临的线性规划问题是什么,我们都会竭尽全力提供专业的帮助,确保您的学习之旅顺利无阻!

问题 1.


Example 3: Given the objective function $C=12 x+4 y$ and the following feasible set,
A. Find the maximum value.
B. Find the minimum value.

.


Solution: Notice that the feasible set is unbounded. This means that there may or may not be an optimal solution which results in a maximum or minimum function value. The vertices (corner points) of the feasible set are $(0,7),(4,2)$, and $(8,0)$.
We substitute each corner point into the objective function, as shown in the chart below.

问题 2.

Example 4: Use the graphical method to solve the following linear programming problem.
$$
\begin{aligned}
& \text { Maximize } R=4 x+11 y \
& \text { subject to: }\left{\begin{array}{l}
x+y \leq 3 \
2 x+y \leq 4 \
x \geq 0 \
y \geq 0
\end{array}\right.
\end{aligned}
$$

Solution: We need to graph the system of inequalities to produce the feasible set. We will start by rewriting each inequality as an equation, and then number the equation for each line.
$$
\begin{aligned}
x+y & =3 \
2 x+y & =4 \
x & =0 \
y & =0
\end{aligned}
$$
We want to graph each of the lines and determine the proper shading for their respective inequalities.
To graph Line (1), we will find its intercepts.
$$
\begin{array}{ll}
x+y=3 & x+y=3 \
x+0=3 & 0+y=3 \
x=3 & y=3
\end{array}
$$
The $x$ – and $y$-intercepts for Line (1) are $(3,0)$ and $(0,3)$, respectively. Since the inequality $x+y \leq 3$ contains an equal sign, a solid line can be drawn through those two intercepts. We need to choose a test point to substitute into the original inequality to determine which half-plane to shade. We will choose the point $(0,0)$ :
$$
\begin{aligned}
& x+y \leq 3 \
& 0+0 \stackrel{?}{\leq} \
& 0 \leq 3 \
&
\end{aligned}
$$
The point $(0,0)$ satisfies the inequality, so we will shade the half-plane containing $(0,0)$.
To graph Line (2), we will find its intercepts.

E-mail: help-assignment@gmail.com  微信:shuxuejun

help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注