还在面临线性代数的学习挑战吗?别担心!我们的linear-algebra-guide团队专业为您解决向量空间、线性变换、矩阵、特征值和特征向量等线性代数的问题。我们拥有深厚的专业背景和丰富的经验,能帮您完成高水平的作业和论文,让您的学习之路一路顺风!
以下是一些我们可以帮助您解决的问题:
线性代数基础:向量空间的定义、性质和基本定理、线性方程组求解等。
矩阵和线性变换:矩阵的运算、特征值和特征向量、线性变换的矩阵表示等知识点。
线性代数应用:正交、正交投影、线性相关和线性无关、线性映射等相关内容。
线性空间和子空间:特征子空间、线性代数基的选择、线性空间的维数等问题。
无论您面临的问题是什么,我们都会尽力为您提供专业的帮助,确保您的学习之旅顺利无阻!

C50 (Robert Beezer) A three-digit number has two properties. The tens-digit and the ones-digit add up to 5. If the number is written with the digits in the reverse order, and then subtracted from the original number, the result is 792 . Use a system of equations to find all of the three-digit numbers with these properties.
Solution (Robert Beezer) Let $a$ be the hundreds digit, $b$ the tens digit, and $c$ the ones digit. Then the first condition says that $b+c=5$. The original number is $100 a+10 b+c$, while the reversed number is $100 c+10 b+a$. So the second condition is
$$
792=(100 a+10 b+c)-(100 c+10 b+a)=99 a-99 c
$$
So we arrive at the system of equations
$$
\begin{gathered}
b+c=5 \
99 a-99 c=792
\end{gathered}
$$
Using equation operations, we arrive at the equivalent system
$$
\begin{aligned}
& a-c=8 \
& b+c=5
\end{aligned}
$$
We can vary $c$ and obtain infinitely many solutions. However, $c$ must be a digit, restricting us to ten values $(0-9)$. Furthermore, if $c>1$, then the first equation forces $a>9$, an impossibility. Setting $c=0$, yields 850 as a solution, and setting $c=1$ yields 941 as another solution.
C51 (Robert Beezer) Find all of the six-digit numbers in which the first digit is one less than the second, the third digit is half the second, the fourth digit is three times the third and the last two digits form a number that equals the sum of the fourth and fifth. The sum of all the digits is 24. (From The MENSA Puzzle Calendar for January 9, 2006.)
Solution (Robert Beezer) Let abcdef denote any such six-digit number and convert each requirement in the problem statement into an equation.
$$
\begin{aligned}
c & =\frac{1}{2} b \
d & =3 c \
10 e+f & =d+e \
24 & =a+b+c+d+e+f
\end{aligned}
$$
In a more standard form this becomes
$$
\begin{aligned}
a-b & =-1 \
-b+2 c & =0 \
-3 c+d & =0 \
-d+9 e+f & =0 \
a+b+c+d+e+f & =24
\end{aligned}
$$
Using equation operations (or the techniques of the upcoming Section RREF), this system can be converted to the equivalent system
$$
\begin{aligned}
& a+\frac{16}{75} f=5 \
& b+\frac{16}{75} f=6 \
& c+\frac{8}{75} f=3 \
& d+\frac{8}{25} f=9 \
& e+\frac{11}{75} f=1
\end{aligned}
$$
Clearly, choosing $f=0$ will yield the solution $a b c d e=563910$. Furthermore, to have the variables result in single-digit numbers, none of the other choices for $f(1,2, \ldots, 9)$ will yield a solution.

E-mail: help-assignment@gmail.com 微信:shuxuejun
help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务