Riemann surface
matlab
无需担心!我们的数值分析专家团队将专业地解决您在数值分析学习中遇到的所有挑战。我们拥有广泛的专业知识和丰富的经验,可以协助您完成高水平的作业和论文,确保您在学习道路上顺利前行!
以下是一些我们可以帮助您解决的问题:
数值分析基础概念:涵盖误差、逼近、稳定性等各种常用数值分析概念的定义、性质和分类。
数值方法:研究和应用于插值、微分、积分、方程求解等的数值方法。
证明与推理:常见的证明技巧和推理方法,如直接证明、归纳证明、反证法等。
数值算法:数值分析在算法设计和分析中的应用,包括迭代算法、优化算法等。
误差和稳定性:介绍数值分析中的误差分析和算法稳定性。
数值优化:针对数值问题的建模和优化问题,例如非线性优化、线性优化等。
数值分析与实际应用:介绍数值分析在科学和工程中的应用,例如流体动力学、结构分析、数据分析等。
无论您面临的数值分析问题是什么,我们都会竭尽全力提供专业的帮助,确保您的学习之旅顺利无阻!

Example 10.4 (p.346)
In Example 8.9 in Chapter 8 (P.268), we derived the an equation to describe a mass that is attached to a spring that would break when its elongation reached $0.03 \mathrm{~m}$ during resonant vibration of the springmass system. We need to determine the time $t_f$ at which the spring breaks from Equation (a):
$$
\left(0.05-\frac{t_f}{20}\right) \cos 10 t_f+\frac{1}{200} \sin 10 t_f-0.03=0
$$
.
Solution:
We will use the Newton-Raphson’s method to solve the unknown quantity $t_f$ in Equation (a) by first assuming a solution on $\mathrm{t}{\mathrm{f}}=0.75$. We made this assumed solution based on a crude approximated value of $\mathrm{t}{\mathrm{f}}=0.7$ in Example 8.9.
Again, let us replace the unknown quantity $t_f$ in Equation (a) by conventional unknown symbol $\mathrm{x}$ in the following alternative form:
$$
\begin{gathered}
\left(0.05-\frac{x}{20}\right) \cos 10 x+\frac{1}{200} \sin 10 x-0.03=0 \
f(x)=\left(0.05-\frac{x}{20}\right) \cos 10 x+\frac{1}{200} \sin 10 x-0.03 \
f^{\prime}(x)=-(0.05-0.5 x) \sin 10 x
\end{gathered}
$$
Thus, the estimated root $x_{i+1}$ after the previously estimated root $x_i$ may be computed by using the expression in Equation (10.5), as will be shown in the next slide.
Example 10.9 (p.358)
Evaluate the following integral by using the Gaussian quadrature in Equation (10.14).
$$
I=\int_0^\pi \cos x d x
$$
We have the function $y(x)=\cos x$ over the integration limits $x_a=0$ and $x_b=\pi$. The transformation of coordinates makes use of the relationship $x=\frac{\pi}{2} \xi+\frac{\pi}{2}$ from Equation (10.13), from which we get: $y(x)=\cos x=F(\xi)=\cos \left(\frac{\pi}{2} \xi+\frac{\pi}{2}\right)=\sin \left(\frac{\pi}{2} \xi\right)$
Also, from Equation (10.14) with the use of the trigonometric relationships such as: $\sin \left(\frac{\pi}{2}+\theta\right)=\cos \theta$ and $\cos \left(\frac{\pi}{2}+\theta\right)=\sin \theta$
We may arrive at the following expression for integrating I in Equation (a) using Gaussian quadrature:
$$
I=\int_0^\pi \cos x d x=\int_{-1}^1\left[\sin \left(\frac{\pi}{2} \xi\right)\left(\frac{\pi}{2} d \xi\right)\right]=\frac{\pi}{2} \int_{-1}^1 \sin \frac{\pi}{2} \xi d \xi=\frac{\pi}{2} \sum_{i=1}^n H_i \sin \left(\frac{\pi}{2} a_i\right)
$$
Let us take, for example, 3 sampling points, i.e., $\mathrm{n}=3$ from Table 10.3 on P.357 with:
$$
\begin{array}{lll}
\mathrm{a}_1=0 & \mathrm{a}_2=+0.77459 & \mathrm{a}_3=-0.77459 \
\mathrm{H}_1=0.88888 & \mathrm{H}_2=0.55555 & \mathrm{H}_3=0.55555
\end{array}
$$
Substituting the above numbers into Equation (b) will lead to the solution:
$$
\begin{aligned}
I & =\frac{\pi}{2}\left[0.88888 \sin (0)+0.55555 \sin \left(\frac{\pi}{2} \times 0.77459\right)+0.55555 \sin \left(-\frac{\pi}{2} \times 0.77459\right)\right] \
& =\frac{\pi}{2}[0.55555 \sin (1.2167)-0.55555 \sin (1.2167)]=0
\end{aligned}
$$
25

E-mail: help-assignment@gmail.com 微信:shuxuejun
help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务