Riemann surface
matlab
无需担心!我们的概率论指导团队将专业地解决您在概率论学习中遇到的各种挑战。我们拥有广泛的专业知识和丰富的经验,可以协助您完成高水平的作业和论文,确保您在学习道路上顺利前行!
以下是一些我们可以帮助您解决的问题:
概率论基础概念:涵盖事件、概率、条件概率等各种常用概率论概念的定义、性质和分类。
概率论结构:研究和应用于离散概率、连续概率、独立性、马尔科夫链等的概率结构。
证明与推理:常见的证明技巧和推理方法,如贝叶斯定理、大数定律、中心极限定理等。
概率论算法:概率论在算法设计和分析中的应用,包括马尔科夫链蒙特卡罗法、随机漫步、期望最大化算法等。
统计学:介绍概率论中的统计概念与方法,如参数估计、假设检验、回归分析等。
优化问题:建模和求解优化问题,例如最大似然估计、贝叶斯估计、凸优化等。
概率论与计算机科学:介绍概率论在计算机科学中的应用,例如机器学习、数据挖掘、自然语言处理等。
无论您面临的概率论问题是什么,我们都会竭尽全力提供专业的帮助,确保您的学习之旅顺利无阻!

-1.1 Homework 1. Due Monday, January 22, 2007
Hand in from p. $114: 4.27$
Hand in from p. $196: 6.5,6.7$
Hand in from p. 234-246: 7.12, 7.16, 7.33, 7.36 (assume each $X_n$ is integrable!), 7.42
Notation 1.1 The extended real numbers is the set $\overline{\mathbb{R}}:=\mathbb{R} \cup{ \pm \infty}$, i.e. it is $\mathbb{R}$ with two new points called $\infty$ and $-\infty$. We use the following conventions, $\pm \infty \cdot 0=0, \pm \infty \cdot a= \pm \infty$ if $a \in \mathbb{R}$ with $a>0, \pm \infty \cdot a=\mp \infty$ if $a \in \mathbb{R}$ with $a<0, \pm \infty+a= \pm \infty$ for any $a \in \mathbb{R}, \infty+\infty=\infty$ and $-\infty-\infty=-\infty$ while $\infty-\infty$ is not defined. A sequence $a_n \in \overline{\mathbb{R}}$ is said to converge to $\infty(-\infty)$ if for all $M \in \mathbb{R}$ there exists $m \in \mathbb{N}$ such that $a_n \geq M\left(a_n \leq M\right)$ for all $n \geq m$.
-1.2 Homework 2. Due Monday, January 29, 2007
Resnick Chapter 7: Hand in 7.9, 7.13.
Resnick Chapter 7: look at 7.28. (For 28b, assume $\mathbb{E}\left[X_i X_j\right] \leq \rho(i-j)$ for $i \geq j$. Also you may find it easier to show $\frac{S_n}{n} \rightarrow 0$ in $L^2$ rather than the weaker notion of in probability.)
Hand in Exercise 13.2 from these notes.
Resnick Chapter 8: Hand in 8.4a-d, 8.13 (Assume $\operatorname{Var}\left(N_n\right)>0$ for all n.)
Lemma 1.2. Suppose $\left{a_n\right}_{n=1}^{\infty}$ and $\left{b_n\right}_{n=1}^{\infty}$ are convergent sequences in $\mathbb{R}$, then:
If $a_n \leq b_{\mathrm{n}}$ for $^1$ a. $a$. $n$ then $\lim {n \rightarrow \infty} a{\mathrm{n}} \leq \lim _{n \rightarrow \infty} b_n$.
If $c \in \mathbb{R}, \lim {n \rightarrow \infty}\left(c a_n\right)=c \lim {n \rightarrow \infty} a_n$.
If $\left{a_n+b_n\right}_{n=1}^{\infty}$ is convergent and
$$
\lim {n \rightarrow \infty}\left(a_n+b_n\right)=\lim {n \rightarrow \infty} a_n+\lim _{n \rightarrow \infty} b_n
$$
provided the right side is not of the form $\infty-\infty$.
$\left{a_n b_n\right}_{n=1}^{\infty}$ is convergent and
$$
\lim {n \rightarrow \infty}\left(a_n b_n\right)=\lim {n \rightarrow \infty} a_n, \lim {n \rightarrow \infty} b_n $$ provided the right hand side is not of the for $\pm \infty \cdot 0$ of $0 \cdot( \pm \infty)$. Before going to the proof consider the simple example where $a_n=n$ and $b_n=-\alpha n$ with $\alpha>0$. Then $$ \lim \left(a_n+b_n\right)=\left{\begin{array}{cc} \infty & \text { if } \alpha<1 \\ 0 & \text { if } \alpha=1 \\ -\infty & \text { if } \alpha>1 \end{array}\right. $$ while $$ \lim {n \rightarrow \infty} a_n+\lim _{n \rightarrow \infty} b_n{ }^{i n}=” \infty-\infty
$$
This shows that the requirement that the right side of Eq. (1.1) is not of form $\infty-\infty$ is necessary in Lemma 1.2. Similarly by considering the examples
${ }^1$ Here we use “a.a. $n^n$ as an abreviation for almost all $n$. So $a_n \leq b_n$ a.a. $n$ iff there exists $N<\infty$ such that $a_n \leq b_n$ for all $n \geq N$.
12
1 Limsups, Liminfs and Extended Limits
$a_n=n$ and $b_n=n^{-\alpha}$ with $\alpha>0$ shows the necessity for assuming right hand side of Eq. (1.2) is not of the form $\infty \cdot 0$.
Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. (1.1). Let $a:=\lim {n \rightarrow \infty} a_n$ and $b=\lim {n \rightarrow \infty} b_n$. Case 1., suppose $b=\infty$ in which case we must assume $a>-\infty$. In this case, for every $M>0$, there exists $N$ such that $b_n \geq M$ and $a_n \geq a-1$ for all $n \geq N$ and this implies
$$
a_n+b_n \geq M+a-1 \text { for all } n \geq N \text {. }
$$
Since $M$ is arbitrary it follows that $a_n+b_n \rightarrow \infty$ as $n \rightarrow \infty$. The cases where $b=-\infty$ or $a= \pm \infty$ are handled similarly. Case 2 . If $a, b \in \mathbb{R}$, then for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that
$$
\left|a-a_n\right| \leq \varepsilon \text { and }\left|b-b_n\right| \leq \varepsilon \text { for all } n \geq N
$$
Therefore,
$$
\left|a+b-\left(a_n+b_n\right)\right|=\left|a-a_n+b-b_n\right| \leq\left|a-a_n\right|+\left|b-b_n\right| \leq 2 \varepsilon
$$
for all $n \geq N$. Since $n$ is arbitrary, it follows that $\lim {n \rightarrow \infty}\left(a_n+b_n\right)=a+b$. Proof of Eq. (1.2). It will be left to the reader to prove the case where $\lim a_n$ and $\lim b_n$ exist in $\mathbb{R}$. I will only consider the case where $a=\lim {n \rightarrow \infty} a_n \neq 0$ and $\lim {n \rightarrow \infty} b_n=\infty$ here. Let us also suppose that $a>0$ (the case $a<0$ is handled similarly) and let $\alpha:=\min \left(\frac{a}{2}, 1\right)$. Given any $M<\infty$, there exists $N \in \mathbb{N}$ such that $a_n \geq \alpha$ and $b_n \geq M$ for all $n \geq N$ and for this choice of $N, a_n b_n \geq M \alpha$ for all $n \geq N$. Since $\alpha>0$ is fixed and $M$ is arbitrary it follows that $\lim {n \rightarrow \infty}\left(a_n b_n\right)=\infty$ as desired.
For any subset $A \subset \overline{\mathbb{R}}$, let sup $A$ and inf $A$ denote the least upper bound and greatest lower bound of $A$ respectively. The convention being that $\sup A=\infty$ if $\infty \in A$ or $A$ is not bounded from above and $\inf A=-\infty$ if $-\infty \in \Lambda$ or $A$ is not bounded from below. We will also use the conventions that $\sup \emptyset=-\infty$ and $\inf \emptyset=+\infty$

E-mail: help-assignment@gmail.com 微信:shuxuejun
help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务