Riemann surface
matlab
无需担心!我们的广义相对论代写专家团队将专业地解决您在广义相对论学习中遇到的各种挑战。我们拥有广泛的专业知识和丰富的经验,可以协助您完成高水平的作业和论文,确保您在学习道路上顺利前行!
以下是一些我们可以帮助您解决的问题:
广义相对论基础概念:涵盖时空、引力、度规等各种常用广义相对论概念的定义、性质和分类。
引力场方程:研究和应用于广义相对论中的引力场方程及其解析解、数值解等。
时空几何与曲率:常见的时空几何性质和曲率计算方法,如测地线、黎曼张量等。
黑洞与宇宙学:广义相对论在黑洞和宇宙学领域的应用,包括黑洞形成、膨胀宇宙模型等。
引力波:介绍引力波的产生、探测与分析方法,如LIGO、VIRGO等引力波探测器。
时空奇异性与时空结构:研究广义相对论中的时空奇异性和时空结构,如黑洞奇点、宇宙奇点等。
广义相对论与量子力学:介绍广义相对论与量子力学的关系和统一理论的研究进展。
无论您面临的广义相对论问题是什么,我们都会竭尽全力提供专业的帮助,确保您的学习之旅顺利无阻!

Consider the following thought:
“Special relativity holds for frames moving at constant relative velocity, but of course acceleration requires general relativity because the frames are noninertial.”
Ineffable twaddle. Special relativity certainly doesn’t cower before simple kinematical acceleration. On the other hand, acceleration, even just uniform acceleration in one dimension, is not without its connections with general relativity. We shall explore some of them here. For ease of notation, we set $c=1$. In part (d) we’ll put $c$ back.
1a) Let us first ask what we mean by “uniform acceleration.” After all, a rocket approaching the speed of light $c$ can’t change its velocity at a uniform rate forever without exceeding $c$ at some point. Go into the frame moving instantaneously at velocity $v$ with the rocket relative to the “lab.” In this frame, by definition the instantaneous rocket velocity $v$ vanishes. Wait a time $d t^{\prime}$ later, as measured in this frame. The rocket now has velocity dv’ in this same frame. What we mean by constant acceleration is $d v^{\prime} / d t^{\prime} \equiv a^{\prime}$ is constant. The acceleration measured in the fixed lab is certainly not constant! The question is, how is the lab acceleration $a=d v / d t$ related to the truly constant $a^{\prime}$ ? To answer this, let $V=v / \sqrt{1-v^2}$, the spatial part of the 4-vector $V^\alpha$ associated with the ordinary velocity $v$. The same relation holds for $V^{\prime}$ and $v^{\prime}$. Assume for the moment that the primed and unprimed frames differ by some arbitrary velocity $w$. The 4-velocity differentials are then given by:
$$
d V^{\prime}=\left(d V-w d V^0\right) / \sqrt{1-w^2}
$$
Explain.
1b) Now, set $w=v$. We thereby go into the frame in which $v^{\prime}=0$; the rocket is instantaneously at rest. Prove that $d v=d v \prime\left(1-v^2\right)$. (Remember, $v$ and $v^{\prime}$ are ordinary velocities.) From here, prove that
$$
\frac{d v}{d t}=a^{\prime}\left(1-v^2\right)^{3 / 2} .
$$
Solution:
This is the standard material of Special Relativity. For a particle moving in an interial frame S along the trajectory $x^\mu=x^\mu(\tau)$ parametrised by the proper time $\tau$, one defines the 4-velocity $U^\mu=d x^\mu / d \tau$ and 4 -acceleration $A^\mu=d U^\mu / d \tau$. Since $d s^2=-c^2 d t^2+d \mathbf{x}^2=-c^2 d \tau^2$, we have $d \tau=d t \sqrt{1-\mathbf{v}^2 / c^2}=d t / \gamma$, so $U^\mu=(\gamma c, \gamma \mathbf{v})$ and
$$
A^\mu=\left(\gamma^4 \frac{\mathbf{v} \cdot \mathbf{a}}{c}, \gamma^4 \frac{\mathbf{v} \cdot \mathbf{a}}{c^2} \mathbf{v}+\gamma^2 \mathbf{a}\right)
$$

FIG. 1: A particle moving in an inertial frame $\mathrm{S}$ along the trajectory $x^\mu=x^\mu(\tau)$ parametrised by the proper time $\tau$. The particle’s 4-velocity $U^\mu$ is orthogonal (in Minkowski metric) to its 4 -acceleration $A^\mu: U_\mu A^\mu=0$.
In particle’s own frame, $A_0^\mu=\left(0, \mathbf{a}0\right)$. Computing the invariant $A\mu A^\mu=\left(A_0\right)_\mu A_0^\mu$, we find
$$
\mathbf{a}_0^2=\gamma^6 \frac{(\mathbf{v} \cdot \mathbf{a})^2}{c^2}+\gamma^4 \mathbf{a}^2
$$
If $\mathbf{v}$ and a have the same direction, eq. (2) simplifies to $a_0^2=a^2 \gamma^6$. One can show that for a particle moving in $\mathrm{S}$ under the action of a constant force, $a_0=$ const. This is the situation considered in the present problem (we shall use the notation $a_0$ rather than $a^{\prime}$ in the solutions).
1c) Show that, starting from rest at $t=t^{\prime}=0$,
$$
v=\frac{a^{\prime} t}{\sqrt{1+a^{\prime 2} t^2}}, \quad a^{\prime} t=\sinh \left(a^{\prime} t\right)
$$
and hence show that (for $x=0$ at $t=t^{\prime}=0$ ):
$$
v=\tanh a^{\prime} t^{\prime}, \quad x=\frac{1}{a^{\prime}}\left[\cosh a^{\prime} t^{\prime}-1\right] .
$$
The integrals are not difficult; do them yourselves.
Problem 2
Recognising tensors. One way to prove that something is a vector or tensor is to show explicitly that it satisfies the coordinate transformation laws. This can be a long and arduous procedure if the tensor is complicated, like $R_{\mu \nu \kappa}^\lambda$. There is another way, usually much better! Show that if $V_\nu$ is an arbitrary covariant vector and the combination $T^{\mu \nu} V_\nu$ is known to be a contravariant vector (note the free index $\mu$ ), then
$$
\left(T^{\prime \mu \nu}-T^{\lambda \sigma} \frac{\partial x^{\prime \mu}}{\partial x^\lambda} \frac{\partial x^{\prime \nu}}{\partial x^\sigma}\right) V_\nu^{\prime}=0
$$
Why does this prove that $T_{\mu \nu}$ is a tensor? Does your proof actually depend on the rank of the tensors involved?
Solution:
If $T^{\mu \nu} V_\nu$ and $V_\nu$ are known to be tensors (vectors), we can write
$$
T^{\prime \mu \nu} V_\nu^{\prime}=\frac{\partial x^{\prime \mu}}{\partial x^\lambda} T^{\lambda \kappa} V_\kappa=\frac{\partial x^{\prime \mu}}{\partial x^\lambda} \frac{\partial x^{\prime \nu}}{\partial x^\kappa} T^{\lambda \kappa} V_\nu^{\prime}
$$
which implies
$$
\left(T^{\prime \mu \nu}-T^{\lambda \sigma} \frac{\partial x^{\prime \mu}}{\partial x^\lambda} \frac{\partial x^{\prime \nu}}{\partial x^\sigma}\right) V_\nu^{\prime}=0
$$
and
$$
T^{\prime \mu \nu}=T^{\lambda \sigma} \frac{\partial x^{\prime \mu}}{\partial x^\lambda} \frac{\partial x^{\prime \nu}}{\partial x^\sigma}
$$
since $V_\nu$ is arbitrary. The same reasoning applies to tensors of arbitrary rank.

E-mail: help-assignment@gmail.com 微信:shuxuejun
help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务