Riemann surface
matlab

还在面临离散数学的学习挑战吗?别担心!我们的discrete-mathematics-guide团队专业为您解决各种与离散数学相关的问题。我们拥有深厚的专业背景和丰富的经验,能够帮助您完成高水平的作业和论文,让您的学习之路一帆风顺!

以下是一些我们可以帮助您解决的问题:

基本离散数学概念:各种常用离散数学概念的定义、性质和分类,如集合、关系、函数、逻辑等。

离散结构:离散结构的研究和应用,如图论、代数结构、组合数学等。

证明和推理:常见的证明技巧和推理方法,如直接证明、归纳证明、反证法等。

离散数学算法:离散数学在算法设计和分析中的应用,如图算法、搜索算法、优化算法等。

概率和统计:离散数学中的概率和统计概念和方法,如概率空间、随机变量、统计推断等。

离散优化:离散优化问题的建模和求解,如线性规划、整数规划、图论优化等。

离散数学与计算机科学:离散数学在计算机科学中的应用,如编译原理、密码学、图形算法等。

无论您面临的离散数学问题是什么,我们都会尽力为您提供专业的帮助,确保您的学习之旅顺利无阻!

问题 1.


Exercise 1 (10 Points). Prove or give a counterexample for each of the following:
(a) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
(b) If $A \in B$ and $B \in C$, then $A \in C$.


Sorts: Quicksort, merge sort, heap sort, tree sort
Runtime: $O(n \log n)$
Explanation: Merge sort and heap sort are always $O(n \log n)$. For quicksort, we can easily choose a good pivot for randomly ordered inputs. For tree sort, the resulting tree will be fairly balanced in the average case.

Comments: You needed to use a comparison-based sort because input contains comparable objects. Bubble, insertion, and insertion sort are inefficient compared to the four listed above. Runtime should not include $k$.

问题 2.

Exercise 2 (10 Points). If $a(t), b(t)$, and $c(t)$ are the lengths of the three sides of a triangle $t$ in non-decreasing order (i.e. $a(t) \leq b(t) \leq c(t)$ ), we define the sets:

$X:={$ Triangle $t: a(t)=b(t)}$

$Y:={$ Triangle $t: b(t)=c(t)}$

$T:=$ the set of all triangles
Using only set operations on these three sets, define:
(a) The set of all equilateral triangles (all sides equal)
(b) The set of all isosceles triangles (at least two sides equal)
(c) The set of all scalene triangles (no two sides equal)

Solution:
(a) We require $a(t)=b(t)$ and $b(t)=c(t)$ (this obiviously implies $a(t)=c(t)$ ), so the set is $X \cap Y$
(b) An isoceles triangle $t$ can have

$a(t)=b(t)$, or

$b(t)=c(t)$, or

$a(t)=c(t)$.

Now we have assumed that $a(t), b(t)$, and $c(t)$ are in non-decreasing order, so the last condition holds if and only if both the first two do. So the required set is $X \cup Y$
(c) A scalene triangle has its two smaller sides $a(t)$ and $b(t)$ unequal (set $T \backslash X$ ) and its two larger sides $b(t)$ and $c(t)$ unequal (set $T \backslash Y$ ). Since the sides are listed in the non-decreasing order, either of the above conditions guarantess $a(t) \neq c(t)$. So the required set is $(T \backslash X) \cap(T \backslash Y)$.
An alternative argument is: A triangle is scalene if and only if it is not isosceles. So using the result of the previous part, the set of scalene triangles is $T \backslash(X \cup Y)$. It’s easy to confirm that the answers given by the two arguments are actually the same – this is an instance of a general rule called De Morgan’s Law.

E-mail: help-assignment@gmail.com  微信:shuxuejun

help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注