Riemann surface
matlab

无需担心!我们的图论指导团队将专业地解决您在离散数学学习中遇到的各种挑战。我们拥有广泛的专业知识和丰富的经验,可以协助您完成高水平的作业和论文,确保您在学习道路上顺利前行!

以下是一些我们可以帮助您解决的问题:

图论基础概念:涵盖集合、关系、函数、逻辑等各种常用离散数学概念的定义、性质和分类。

图论离散结构:研究和应用于图论、代数结构、组合数学等的离散结构。

证明与推理:常见的证明技巧和推理方法,如直接证明、归纳证明、反证法等。

图论算法:图论在算法设计和分析中的应用,包括图算法、搜索算法、优化算法等。

概率与统计:介绍离散数学中的概率和统计概念与方法,如概率空间、随机变量、统计推断等。

离散优化:建模和求解离散优化问题,例如线性规划、整数规划、图论优化等。

离散数学与计算机科学:介绍离散数学在计算机科学中的应用,例如编译原理、密码学、图形算法等。

无论您面临的离散数学问题是什么,我们都会竭尽全力提供专业的帮助,确保您的学习之旅顺利无阻!

问题 1.


Determine the value of $\operatorname{ex}\left(n, K_{1, r}\right)$ for all $r, n \in \mathbb{N}$.


Solution: We would like to determine how many edges a graph $G$ on $n$ vertices can have before a $K_{1, r}$ subgraph is forced. Note that $G$ has a $K_{1, r}$ subgraph if and only if $\Delta(G) \geq r$. Thus, we must determine the maximum number of edges $G$ can have and still maintain $\Delta(G)<r$. We consider two cases:

Case 1: $n \leq r$. Clearly, if $n \leq r$, we must have $\Delta(G)r$. In this case, we try to draw edges on the vertices of $G$ so that $d(v)=r-1$ for all $v \in V(G)$. While it may not be possible to draw an $r$-1-regular graph on $n$ vertices, we are able to draw $\left\lfloor\frac{(r-1)-n}{2}\right\rfloor$ edges. Thus $\operatorname{ex}\left(n, K_{1, r}\right)=\left\lfloor\frac{(r-1) \cdot n}{2}\right\rfloor$.

问题 2.

Given $k>0$, determine the extremal graphs without a matching of size $k$.

Solution: Let $n \in \mathbb{N}$ and $k>0$. We will consider two cases:
Suppose $n<2 k$. The complete graph $K_{2 n}$ will certainly have no matching of size $k$. This graph $K_{2 n}$ has $\left(\begin{array}{l}n \ 2\end{array}\right)$ edges, and we certainly cannot better. Thus $K_{2 \mathrm{n}}$ is the extremal graph in this case.

Suppose $n \geq 2 k$. We construct the extremal graph in the following way: First, construct a $K_{k-1}$. Then, draw an edge from each of the remaining $(n-k+1)$ vertices to each of the edges in the $K_{k-1}$. Then every edge in a maximal matching will be incident to a vertex in the $K_{k-1}$. Thus, the size of the maximal matching on this graph is $k-1$. This graph has $\left(\begin{array}{c}k-1 \ 2\end{array}\right)+(n-k+1)(k-1)$ edges, and it is the extremal graph.

E-mail: help-assignment@gmail.com  微信:shuxuejun

help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注