Riemann surface
matlab
毫无疑问!我们的复杂网络专家团队将以专业的方式解决您在复杂网络研究中遇到的所有挑战。我们具备广泛的专业知识和丰富的经验,可以协助您完成高质量的作业和论文,确保您在学习道路上顺利前行。
以下是一些我们可以帮助您解决的问题:
复杂网络基础理论:包含图、网络、节点、边等基本概念的定义、性质和分类。
复杂网络结构:研究和应用于小世界网络、无标度网络、社区结构等复杂网络的结构特性。
证明与推理:常见的证明技巧和推理方法,如直接证明、归纳证明、反证法等。
复杂网络算法:包括社区检测、网络生成、网络布局等复杂网络的算法设计和分析。
网络动力学:介绍复杂网络中的动力学过程与方法,如扩散、级联、同步等。
网络优化:针对复杂网络的建模和优化问题,例如网络布局优化、社区结构优化等。
复杂网络与计算机科学:探讨复杂网络在计算机科学中的应用,例如网络安全、数据挖掘、人工智能等。
无论您面临的复杂网络问题是什么,我们都会竭尽全力提供专业的帮助,确保您的学习之旅顺利无阻!

2c. Is the sequence of Erdős-Rényi random graphs $\left(\mathrm{ER}n(\lambda / n)\right){n \in \mathbb{N}}$ small world for all choices of $\lambda \in(0, \infty)$ ?
.
Solution: No, only for $\lambda \neq 1$. For $\lambda<1$, all clusters have size $O(\log n)$, in which case the statement is obvious. For $\lambda>1$, there is one giant component, whose size is $\Theta(n)$, while all other clusters again have size $O(\log n)$. But even within the giant component distances are $O(\log n)$. For $\lambda=1$, there are many components of size $\Theta\left(n^{2 / 3}\right)$, and they have larger distances, namely, $\Theta\left(n^{1 / 3}\right)$.
A real-world network is represented as a simple (i.e., with no multiple edges and self-loops) undirected graph $\mathbf{G}^$ with $n=5$ vertices. Chung and Lu decide they want to compare their model with the real-world network. They define their connection probabilities $\left{p_{i j}\right}$ (with $p_{i i} \equiv 0 \forall i$ ) and, after computing them on the real network, they find that $p_{34}>p_{53}, p_{15}>p_{25}$, $p_{43}>p_{14}, p_{52}=p_{45}$. 4a. Find the degree sequence $\vec{k}\left(\mathbf{G}^\right)$ of the real-world network $\mathbf{G}^*$. Explain your result.
Solution: In the Chung-Lu model, the connection probabilities are $p_{i j}=k_i k_j / 2 L$ for $i \neq j$ and $p_{i i}=0$, where $\left{k_i\right}_{i=1}^n$ are the degrees and $L=\sum_{i=1}^n k_i / 2$ is the total number of links. Therefore $p_{i l}>p_{j l}$ implies $k_i>k_j$, and $p_{i l}=p_{j l}$ implies $k_i=k_j$ (for $l \neq i, j$ ). From the (in)equalities given in the text, we can therefore conclude that
$$
k_3>k_1>k_2=k_4>k_5
$$
Since the degrees are non-negative integers, it is easy to check that the only set of numbers that satisfies the above (in)equalities in such a way that a simple undirected graph can be realized is
$$
4>3>2=2>1 .
$$
The corresponding degree sequence is:
$$
\vec{k}\left(\mathbf{G}^*\right)=(3,2,4,2,1)
$$

E-mail: help-assignment@gmail.com 微信:shuxuejun
help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务