Riemann surface
matlab
还在面临预备微积分的学习挑战吗?别担心!我们的calculus-primer-guide团队专业为您解决函数、极限、导数等方面的问题。我们拥有深厚的专业背景和丰富的经验,能帮您完成高水平的作业和论文,让您的学习之路一帆风顺!
以下是一些我们可以帮助您解决的问题:
函数和图像:函数的定义、性质和分类,函数的图像和性态分析,如奇偶性、周期性等。
极限和连续性:极限的概念、性质和计算方法,函数的连续性和间断点的分类,如可导性和间断点的判定。
导数和微分:导数的定义和计算方法,函数的导数和微分的性质,如导数的运算规则、高阶导数等。
积分和面积:定积分和不定积分的概念、性质和计算方法,曲线下面积的计算,如积分的换元法、分部积分等。
微分方程:常微分方程的概念、基本类型和求解方法,如一阶微分方程、二阶线性微分方程等。
应用问题:微积分在物理学、经济学、工程学等领域的应用,如速度、加速度、优化问题等。
无论您面临的预备微积分问题是什么,我们都会尽力为您提供专业的帮助,确保您的学习之旅顺利无阻!

Problem 2. Find the point of intersection, if there is one, between the following lines:
(a) $y=-x+5$ and $y-2=3(x+1)$
(b) The line passing through $(-1,-2)$ and the origin, and the line $y=2 x-2$.
Solution: (a) First, we write both lines in slope-intercept form,
$$
y=-x+5 \quad y=3 x+5
$$
If $(x, y)$ is a point of intersection of the lines, it must satisfy both equations. Assuming $(x, y)$ is as such, we have that
$$
\begin{gathered}
-x+5=3 x+5 \
-x=3 x \
x=0 .
\end{gathered}
$$
Thus, $x=0$. To find $y$, we can plug $x=0$ into either one of the original equations, and get that $y=5$. Thus, $(0,5)$ is the (unique) point of intersection.
(b) The line passing through $(-1,-2)$ and the origin has slope
$$
m=\frac{0-(-2)}{0-(-1)}=2,
$$
and can be expressed by the equation $y=2 x$. But, this line is parallel to (and distinct from) the line $y=2 x-2$, so they cannot have any points of intersection.
Problem 3. Find all real roots $x$ of the following polynomials, and factor into irreducible polynomials.
(a) $6 x^2+5 x+1$
(b) $-x^2+x+1$
(c) $2 x^2-3 x+5$
(d) $x^3+6 x^2-7 x$
(e) $x^3-x^2+x-1$
(f) $x^4-2 x^2+1$
Solution: Note that a polynomial is irreducible if it cannot be factored into non-constant polynomials with real coefficients.
(a)
$$
\begin{aligned}
6 x^2+5 x+1 & =6 x^2+3 x+2 x+1 \
& =3 x(2 x+1)+1(2 x+1) \
& =(3 x+1)(2 x+1) .
\end{aligned}
$$
This factors the polynomial into irreducibles, and shows that its roots are $x=-\frac{1}{3}$ and $x=-\frac{1}{2}$.
(b) We use the quadratic formula:
$$
\begin{aligned}
x & =\frac{-1 \pm \sqrt{1^2-4(-1)(1)}}{2(-1)} \
& =\frac{-1 \pm \sqrt{1+4}}{-2} \
& =\frac{1 \pm \sqrt{5}}{2},
\end{aligned}
$$
Thus, $x=\frac{1 \pm \sqrt{5}}{2}$ are the two real roots of the polynomial. It follows that the polynomial factors as
$$
-x^2+x+1=-\left(x-\frac{1+\sqrt{5}}{2}\right)\left(x-\frac{1-\sqrt{5}}{2}\right)
$$
(c) We use the quadratic formula:
$$
\begin{aligned}
x & =\frac{-(-3) \pm \sqrt{(-3)^2-4(2)(5)}}{2(2)} \
& =\frac{3 \pm \sqrt{-31}}{4},
\end{aligned}
$$
which cannot be real. Thus, the polynomial has no real roots, and cannot be factored further (a polynomial of degree 2 or 3 is irreducible if and only if it has no roots).
(d)
$$
\begin{aligned}
x^3+6 x^2-7 x & =x\left(x^2+6 x-7\right) \
& =x\left(x^2-x+7 x-7\right) \
& =x(x(x-1)+7(x-1)) \
& =x(x+7)(x-1)
\end{aligned}
$$
This factors the polynomial into irreducibles, and shows that the its roots are $x=0, x=-7$ and $x=1$.
(e) It is easy to see that $x^3-x^2+x-1$ has root $x=1$, since
$$
(1)^3-(1)^2+1-1=1-1=0
$$
So, we can factor out an $(x-1)$. Using polynomial long division,
$$
\begin{aligned}
& x-1) \frac{x^2+1}{x^3-x^2+x-1} \
& -x^3+x^2 \
& x-1 \
& \frac{-x+1}{0} \
&
\end{aligned}
$$
we get that
$$
x^3-x^2+x-1=(x-1)\left(x^2+1\right)
$$
and $x^2+1$ has no real roots since $x^2+1>0$ for all $x \in \mathbb{R}$. Thus, this factors the polynomial into irreducibles, and the only real root is $x=1$.
(f) Let $z=x^2$, then
$$
\begin{aligned}
x^4-2 x^2+1 & =z^2-2 z+1 \
& =(z-1)(z-1) \
& =\left(x^2-1\right)\left(x^2-1\right) \
& =(x-1)(x+1)(x-1)(x+1) .
\end{aligned}
$$
This factors the polynomial into irreducibles, and shows that its roots are $x= \pm 1$.
Problem 4. Solve the following equations for $x$.

E-mail: help-assignment@gmail.com 微信:shuxuejun
help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务