遇到组合优化作业的困难? 别担心! 我们的combinatorial-optimization-guide团队专门为您 解决图论、匹配、网络流、动态规划和NP完全性等方面的问题。我们拥有丰富的经验,能帮 助您完成高质量的作业和论文,让您的学习之路畅通无阻!
以下是一些我们可以帮助您解决的问题:
组合优化基础:图论、网络流、整数规划等。
动态规划与贪心策略: 状态转移方程的设计、贪心决策的证明、优化问题的递归解决等。
匹配与网络流:二部图最大匹配、网络最大流最小割定理、多源多汇问题等。
NP完全性与近似算法: NP完全问题的证明、困难问题的近似算法设计、复杂性理论等。
其他相关主题,如:组合优化在计算机科学、运筹学、工业工程中的应用、优化软件的使 用、最新的优化理论与算法等。

 

 

问题 1.

Problem 1 Given a graph $G=(V, E)$ let $\mathcal{I}=\{S \subseteq V \mid$ there is a matching $M$ in $G$ that covers $S\}$. Prove that $(V, \mathcal{I})$ is a matroid.

 

The theory of thProblem 1 Given a graph $G=(V, E)$ let $\mathcal{I}=\{S \subseteq V \mid$ there is a matching $M$ in $G$ that covers $S\}$. Prove that $(V, \mathcal{I})$ is a matroid.e harmonic oscillator gives the average kinetic energy as $\bar{V}=\frac{1}{2} E$, i.e., $\frac{1}{2} m \omega^2 A^2=\frac{1}{4} \hbar \omega$, where $\mathrm{w}=\sqrt{g / l}$ and $A$ is the root-meansquare amplitude of the zero-point oscillation. Hence
Thus the zero-point oscillation of a macroscopic pendulum is negligible.
(b) If we regard the width and height of the rigid obstacle as the width and height of a gravity potential barrier, the tunneling probability is
$$
\begin{aligned}
T & \approx \exp \left[-\frac{2 w}{\hbar} \sqrt{2 m\left(m g H-\frac{1}{2} m v^2\right)}\right] \\
& =\exp \left(-\frac{2 m w}{\hbar} \sqrt{2 g H-v^2}\right),
\end{aligned}
$$
where
$$
\frac{2 m w}{\hbar} \sqrt{2 g H-v^2} \approx 0.9 \times 10^{30} \text {. }
$$
Hence
$$
T \sim e^{-0.9 \times 10^{30}} \approx 0
$$
That is, the tunneling probability for the marble is essentially zero.
(c) The de Broglie wavelength of the tennis ball is
$$
\lambda=\mathrm{h} / \mathrm{p}=h / m v=1.3 \times 10^{-30} \mathrm{~cm},
$$

Problems and Solutions on Electromagnetism
and the diffraction angles in the horizontal and the vertical directions are respectively
$$
\theta_1 \approx \lambda / D=1.3 \times 10^{-32} \mathrm{rad}, \quad \theta_2 \approx \lambda / L=9 \times 10^{-33} \mathrm{rad} .
$$
Thus there is no diffraction in any direction.

 

问题 2.

Problem 2 Let $G=(V, E)$ be a graph and let $\mathcal{I}=\{J \subseteq E:|J \cap E(U)| \leq 2|U|-3, U \subseteq$ $V,|U|>1\}$. Show that $(E, \mathcal{I})$ is a matroid.

 

In order to show that $(E, \mathcal{I})$ is a matroid, we need to verify the following three axioms of a matroid:

1. **The empty set is independent:** It’s clear that the empty set satisfies the condition for all subsets $U$ of $V$, hence $\emptyset \in \mathcal{I}$.

2. **Any subset of an independent set is independent:** Let $I$ be an independent set and $J$ be any subset of $I$. For all $U \subseteq V$, we have $|J \cap E(U)| \leq |I \cap E(U)| \leq 2|U| – 3$. Hence, $J \in \mathcal{I}$.

3. **If $A$ and $B$ are in $\mathcal{I}$ and $|A|<|B|$, then there exists an element in $B$ but not in $A$ that can be added to $A$ without violating the property of $\mathcal{I}$:** Let’s consider two independent sets $A$ and $B$ in $\mathcal{I}$ with $|A|<|B|$. We need to find an edge $e \in B \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$. Let’s denote by $U$ the vertices incident to $e$.

– If $|U|=1$, then $|A \cup \{e\} \cap E(U)| \leq 2|U|-3 = -1$, a contradiction, which implies that there is no edge with a single vertex in the graph.

– If $|U|>1$, then we have $|A \cup \{e\} \cap E(U)| \leq |A \cap E(U)| + 1 \leq 2|U| – 2 \leq 2|U| – 3$ because the addition of the edge $e$ could at most add one to the number of edges in $A$ that are incident to vertices in $U$. This implies $A \cup \{e\} \in \mathcal{I}$.

Therefore, $(E, \mathcal{I})$ satisfies all the properties of a matroid.

 
 

E-mail: help-assignment@gmail.com  微信:shuxuejun


help-assignment™是一个服务全球中国留学生的专业代写公司
专注提供稳定可靠的北美、澳洲、英国代写服务
专注于数学,统计,金融,经济,计算机科学,物理的作业代写服务

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注